TI® or Texas Instruments® has announced a new family of companion integrated circuits for SimpleLink®. According to TI®, these offer BLE or Bluetooth 5.3 Low Energy and Wi-Fi 6. The specialty of these chips is they provide connectivity in any type of environment, even when the temperature is over 220 °F (104.44 °C).
Industrial designs such as electric vehicle charging systems operating in the outdoors and sometimes hard-to-access environments is a challenging and expensive options for designers. Under such circumstances, the new SimpleLink® family of Wi-Fi devices from TI® is significantly simpler to install, and more affordable to implement, than ever before.
The SimpleLink® family consists of two chips, differentiated by their functionality. These are the CC3300 and the CC3301. While the lower-cost CC3300 offers Wi-Fi 6 connectivity alone, the other chip, the CC3301 adds the BLE or Bluetooth 5.3 Low Energy support. Both the ICs require pairing with a host microcontroller. This is a departure from TI®’s earlier SimpleLink® designs that combine a microcontroller and the radio. Significantly, there is no vendor tie-in, as both chips can work seamlessly with many types of controllers and processors from TI® and brands other than TI® that support real-time or Linux operating systems.
TI® is offering the devices in a QFN or quad flat no-lead package. Later in the year, TI® plans on introducing pin-compatible CC3xx variants that will add dual-band Wi-Fi connectivity, like 2.4 GHz and 5 GHz. At present, TI®® is also offering the BP-CC3301, an evaluation board.
With a SimpleLink® CC3301, it is easy to add BLE and Wi-Fi 6 connectivity to devices. It offers affordable, secure, and reliable connectivity in embedded applications. All it needs is a MCU host running RTOS, or a processor host running Linux. The BP-CC3301 is a test and development board from TI that the user can easily connect to any TI® Launchpad development kit or to a processor board, thereby enabling rapid software development.
The user can use the kit in three configurations. One, for MCU and RTOS evaluation they can use the BP-CC3301 and LaunchPad with the MCU like the LP-AM243 running TCP/IP. Two, for processor and Linux evaluation, they can use the BP-CC3301 along with the BP-CC33-BBB-ADAPT and the BEAGLE-BONE-BLACK. Third, for RF testing using PC Tools, they can use the BP-CC3301 and the LP-XDS110. Additionally, the user can also wire the BP-CC3301 to any other RTOS or Linux host board that is also running the TCP/IP stack.
The BP-CC3301 has many useful features. It offers a companion IC providing Wi-Fi 6 and BLE in a QFN package. It has a BoosterPack plug-in module header or a 2×20 pin stackable connector to connect to plug-in modules of BoosterPack or other TIR LaunchPad development kits. The development kit comes with an on-the-board chip antenna with an option for testing based on SMA/U.FL. The kit also provides an SWD type interface for RF testing and standalone operation.
TI® has designed the development kit to accept power from a connected LaunchPad® kit. However, some LaunchPad® kits cannot supply the peak current requirement when the Wi-Fi 6 is operating. In such cases, the user can provide additional power from the USB connector.