In agriculture, where plants require watering, people often use time-controlled watering methods. While this method irrigates plants in fixed time intervals, there is no way to assess whether there is an actual need for watering. Most often, this leads to either over-watering or under-watering. Depending on weather conditions, over-watering may cause harmful water-logging, while under-watering may lead to dry stress for plants. People often mitigate the amount of water flow by using a rain sensor or controlling the water delivery based on online weather information.
Using a sensor to sense the amount of moisture in the soil and control the watering works much better. Not only does the latter method allow optimal water supply to the plants, but it also substantially reduces water consumption. Threshold levels can be set using various strategies. Any experienced gardener can recognize the start of dry stress when they notice the plants wilting slightly, or when the leaf edges start rolling.
Excessive watering does not increase the moisture in the soil, rather, it results in saturation. By delaying watering for a while, the excess water usually drains off into the subsoil. Most gardeners set the lower threshold to about 60% of the saturation level. They observe the plants and the moisture trend during the early phases to adjust the threshold levels to allow an economical and optimal automatic watering. It is necessary to position the sensor properly in the soil near the root area. For drip irrigation, it is possible to achieve a good soil moisture cycle by placing the sensor somewhere where it is neither too far nor too close to the drip location.
For working with moisture sensors, it is necessary to consider sensor selection and integration. This is because moisture sensors have two functions in a watering system. The first is they provide information about the current status of the watering. The second is they help to economically use water as a resource. Many plants are intolerant to dry soil as they are to water-logging. Moreover, while there are numerous types of moisture sensors, they have different ways of working and their life spans vary widely.
The presence of moisture in the soil can have different definitions. There is the volumetric water content, which represents the amount of water in the total amount of soil. In natural soil, the maximum volumetric water content is about 50-60 % and represents the amount of water filling all the airspace in the soil. Organic materials and peat can hold more water.
The relative mass of water in the soil is its gravimetric water content. This is determined chiefly by weighing the soil sample before and after drying. As it requires a laboratory to do the measurement, this method is not suitable for continuous monitoring in the field.
A variety of principles of physical measurements form the basis of many types of electrical sensors for measuring soil moisture. The most inexpensive is the measurement of electrical conductivity. Next are low-frequency capacitive sensors. High-frequency capacitive sensors are more expensive. Then there are tensiometers that measure the soil moisture tension.