Plants are necessary for life on the planet Earth, as they transform the gas Carbon-Di-Oxide that animals exhale into life-sustaining Oxygen. Plants, in turn, depend largely on bees to pollinate their flowers and propagate thereby. That makes honey bees a keystone species, which humans have recognized throughout history. Bees help to pollinate nearly 70% of all plants on earth assuring about 30% of the global food supply. That makes bees a predictor of our planet’s future health.
Global warning has brought with it an alarming rise in the growth rates of damaging pathogens such as fungi, viruses and mites. At the same time, there has been a serious disrupt in the natural rhythms that the bee population had adapted over centuries of consistent seasonal weather patterns. Crop production is infested with pesticides, which bees ingest and transmit back to their hives during pollination. This often leads to a total collapse of colonies. Electromagnetic radiation level in the atmosphere is rising with the exponential growth of cell phones and wireless communication towers. This interferes with the ability of the bees to navigate in flight.
All the above has made it imperative for scientists to monitor the activity of honey bees within their hives in the daytime as well as at night including during inclement weather. At the University College of Cork in Ireland, a group of food business, embedded systems engineering and biology students have recently taken up the challenge. They have developed a unique platform for monitoring, collecting and analyzing activity of bees within the colonies unobtrusively.
The project Smart Beehive has earned top honors in the Smarter Planet Challenge 2014 of IEEE/IBM. Using mobile technology, the project deploys big data, wireless sensor networks and cloud computing for recording and uploading encrypted data.
Waspmote is a modular hardware sensor platform. Libelium has developed Waspmote for any sensor network and wireless technology to connect to any cloud platform. The UCC team of students has used Waspmote as their starting point along with integrated hive condition and gas sensors. They have used ZigBee radios, GSM and 3G communications to study the impact of oxygen, carbon dioxide, humidity, temperature, airborne dust levels and chemical pollutants on the honey bees. The students captured data from initial observations in two scientific papers and three invention disclosures.
According to the famous physicist Albert Einstein, man can survive only for four years on earth if there were no bees left. Smart technology can integrate beehive sensors and analyze the data they collect. Therefore, such platforms play a critical role not only in ensuring continuation of pollination, but also in ultimately monitoring, understanding and managing the precious global resources as well.
The Plug & Sense! Technology from the Libelium Waspmote wireless sensor platform offers the use of a wide range of sensors, integrating more than 70 of them at a time. It can adapt to any scenario of monitoring with wireless sensors such as water quality, vineyard monitoring, livestock tracking, irrigation control, air and noise pollution, etc.
Outdoor deployment is possible because of the waterproof enclosures used by Plug & Sense! Moreover, using solar panels, the honeybee project has the ability to harvest energy.