All kinds of mechanical systems use a critical component commonly known as an encoder. Large industrial machines performing delicate work, high-precision prototyping, or repeatable tasks use encoders predominantly. Production of advanced electronics also requires the use of encoders. Encoders can be linear, angle, or rotary and the electronics sector uses them in some form or the other. Semiconductor fabrication, with its small components and work areas, requires encoders of the highest resolution and accuracy.
Production of electronics often uses vacuum environments with unique ventilation. These environments require special types of encoders, including linear and angle types made specifically to operate with the temperature and gaseous conditions prevalent with vacuum environments.
CNC machines must maintain their accuracy and position even when operating with heavy spindles and workpieces, high speeds, and multi-axis movements. All the components need to work together for accurate milling, drilling, and boring. Encoders play an important role in the synchronous working of CNC machines. For instance, custom linear encoders guide the travel of the axes of a milling machine.
At present, the automation industry is striding ahead rapidly and requires capable encoders. Strausak, a grinding machine company, makes robotic arms that manufacturing environments use universally. Unmanned mechanical systems must rely on accurate and consistent measurement and motion provided by encoders.
Automated transportation, such as high-speed trains in Sweden, depends on custom-made absolute encoders. These encoders operate a redundant system for automatically controlling the speed and braking of the train when necessary.
The medical industry requires precision and accuracy along with safety for testing and treating the human body while developing new procedures in the lab. CT and MRI scanning machinery use exposed linear and rotary encoders for precision imaging and maintaining patient safety. Precision angular and linear encoder technology help radiation therapy, leaving no room for error.
For instance, GammaPod, the most advanced breast cancer treatment in the world, depends on absolute rotary encoders for operating its stereotactic radiotherapy system. The medical industry depends on encoders predominantly because of the precision necessary for safely and accurately testing and treating the human body.
Robotics often uses articulating arms for picking and placing objects and equipment in manufacturing plants. They also use mobile, guided, and automated robots, which, in turn, require encoders for their proper functioning. For instance, encoders provide automated systems with the necessary and effective position and speed feedback for allowing them to function with minimum human intervention. Robotics often uses low-profile encoders that can fit inside small robotic arms.
All types of encoders are available for serving the general purpose of measuring motion and providing signaling feedback. However, their capabilities, configurations, and applications vary significantly and widely. In every facet of life, encoders play a significant role. This is especially applicable in the industrial and technological world, where safety, accuracy, and precision are important parameters to uphold.
Knowledge of the encoder transfer function is important for selecting the proper resolution for incremental optical encoders and for tuning the regulator depending on the speed and torque of the application. The implementation of a proper control loop impacts the stability and performance of the application.