High currents, such as 500 Amps and above, are common nowadays. Industries regularly use equipment consuming high currents, and vehicle batteries experience very high currents for a short time during starting. With vehicles increasingly trending towards their electric versions, it is becoming necessary to be able to measure high currents with precision. Increasingly, it is increasingly becoming critical to monitor current consumed accurately for ensuring performance and long-term reliability.
Current sensing is necessary for essential operations such as battery monitoring, DC to DC converters, motor control, and so on. Device specification mainly defines the performance of any current sensor solution. This includes the efficiency, precision, linearity, bandwidth, or accuracy. However, for designers designing a system to satisfy all the requirements of the specifications can be a challenging task. One way to do this is to use a precision shunt, a shunt monitor, and a signal conditioner.
The ±500 A precision shunt-based current sensor design from Texas Instruments (TI) has an accuracy of 0.2% of full scale reading (FSR) over a huge temperature range of -40 to +125°C. Several applications such as motors and battery management systems require such precision current sensing. In general, these applications suffer from poor accuracy caused by shunt tolerances, temperature drift, and non-linearity. Shunt monitors such as INA240, and signal conditioners such as PGA400-Q1 from TI help to solve these problems.
The design from TI works on 48 V or 12 V battery management systems and is suitable for measuring ±500 A, with both high- and low-side current sensing. It accurately compensates for temperature and non-linearity to the second order with an algorithm. Furthermore, it offers protection against harness faults such as input/out signal protection, reverse polarity, and overvoltage. TI has protected its design from electromagnetic interference.
Several ways of measuring currents are available, and these include using magnetic saturation, magneto-resistance methods, Lorentz force law, Ohm’s law, Faraday’s induction law, and more. While each technology presents its own advantages and disadvantages, every customer has his or her own preference and place of use for the specific topology they prefer to choose.
The simplest and most common technology makes use of Ohm’s law, which this TI design also uses. When designing the system for measuring currents, essentially the designer must choose where the current is to be measured—high side or low side, the range of measurement, and whether the current is uni-polar or bi-directional. These parameters define the suitable topology and the design the designer must use. Most vehicle systems now prefer to use 48 V and this new trend implies the current sensor will have to measure a large span of range.
The method of measurement follows a simple process. The ±500 A current passes through the shunt whose resistance measure 100 µΩ. This causes a noticeable amount of voltage drop across the shunt. The current sense monitor INA240 measures this small amount of voltage and passes it on to the signal conditioner, PGA400-Q1. The delta-sigma ADC micro-controller inside PGA400-Q1 creates a ratio-metric voltage between 0.5 and 4.5 V using its linearity and compensation algorithms.