Any ordinary electrical switch has two contacts. Push-type switches are spring loaded so that pushing a button brings them together and they spring apart on releasing the button. Rocker switches have mechanical levers that close the contacts when in one position, while in the other position they pull apart.
In reed switches, the two contacts are in the shape of metal reeds, each coated with a metal that does not wear easily. The reeds are made from a ferromagnetic material, so they are easy to magnetize. The entire assembly is hermetically sealed within a thin glass envelope containing a nonreactive gas such as nitrogen. For extra protection, sometimes the glass envelope may have a plastic casing.
The ferromagnetic material making up the reeds is typically a nickel-iron alloy that shows high magnetic permeability but low magnetic retentivity. That means, when brought close to a magnet, it magnetizes the reeds, which come together in contact. On moving the switch away from the magnetic field, the reeds lose their magnetic property and separate. Their movement has high hysteresis, that is to say they close and open slowly and smoothly. The reeds have a flat area where they contact each other, and this helps to extend the life and reliability of the switch.
Although reed switches typically have two ferromagnetic contacts, some variants may have only one ferromagnetic contact, while the other is non-magnetic. Others may have three contacts, with two non-magnetic and the central one as ferromagnetic.
Like ordinary switches, reed switches also come as two major variants—normally open type and normally closed type. This refers to the position of the reeds when there is no magnetic influence on them. Therefore, the normally open type has its reeds separated from each other, and they close when a magnet is brought close enough. The normally closed type of reed switch has its reeds in contact with each other, and they move apart when a magnet is brought close enough.
As the magnet comes close to a normally open reed switch, the two contacts become magnetized as opposite magnetic poles, and they attract each other to close. In this position, the switch can pass an electric current. This magnetizing of the reeds is independent of the pole of the magnet coming close to them. As the magnet moves away, the reeds lose their magnetism, and their stiff and springy nature makes them spring apart in their original position.
Reed switches are very useful as sensors such as for sensing level of liquids. A sealed stem holds the reed switches at different heights. A float containing a permanent magnet rides on the stem, going up and down as the liquid level changes. When the float magnet comes close to one of the reed switches, it snaps close, changing its electrical status that any electronic circuit can sense. Automotive, marine, and industrial applications use reed switches for level sensing.
A float switch in a dishwasher controls the level of water in the machine. The shaft containing the reed switch is positioned at the water fill limit of the pan. As the water rises, so does a float containing the magnet. When the magnet comes close to the reed switch, it closes, and signals the ECU.