Those looking for a low-cost automation and home control solution can use the Pi-Mote controller board from Energenie. The Pi-Mote controller board is an add-on for your single board computer, the Raspberry Pi or more simply, RBPi. With this combination, you can control electrical appliances connected to special radio controlled electrical sockets.
Working at 433.92 MHz, the Pi-Mote controller board for radio-controlled sockets is easy to install and command. The product offers a safe and simple way to let your RBPi control mains powered devices and appliances. The Pi-Mote controller board from Energenie is compatible with all RBPi models such as the A, A+, B, B+ and B2.
The Pi-Mote controller has a range of up to 30 meters and puts out an output power of 3V, 27mA at +12 dBm. The output is encoded at four data bits, offering a 20-bit address pre-set with OTP. The user can select the output modulation with software from OOK or FSK.
The product actually comes in two parts, the RF board and the electrical socket. The RF board attaches to the RBPi for controlling several 13A, 3-pin electrical sockets. Although the original Energenie sockets are meant for use in the UK, plug adapter sockets are available, which make these almost universal. You can also get kits with a 4-way extension lead and other compatible sockets from Energenie. All can be controlled from the Pi-Mote controller board.
A small Python program allows the add-on RF transmitter board to control up to 4 radio controlled sockets simultaneously by toggling the socket on and off individually. The add-on board attaches to the GPIO pins of the RBPi. In its basic form, each board transmits a frame of information to the sockets. The frame is made up of a 20-bit address and a 4-bit control data. Additionally, the frame uses the On-Off Keying or OOK technique, a basic form of Amplitude Shift Keying or ASK. The source addresses are pre-programmed and the user cannot change them.
When using the Pi-Mote controller, you are required to insert the radio-controlled socket into the mains wall socket and switch it on. The socket then enters a learning mode, which is indicated by the slowly flashing LED in front of the socket housing. You can force a socket to enter the learning mode at any time by pressing the green button on its housing form, holding it for five seconds and releasing it.
Once it is in the learning mode, send the socket a signal from the program running on the RBPi. The LED on the socket housing gives a brief flash and stops glowing. This indicates the socket has accepted and memorized its address. You can then program the rest of the three sockets in turn; otherwise, they will react to the same address. When using more than one socket, insert each into separate mains wall outlets, maintaining a physical separation of at least 2 meters so they do not interfere with each other. The sockets must not be put into a single extension lead.