Tag Archives: BME680

Measuring Air Quality with IoT Sensor

Bosch Sensortec is making an IoT environmental sensor for measuring air quality. The BME680 can measure the indoor air quality, relative humidity, barometric pressure, and ambient air temperature. It has four sensors housed within a single LGA package measuring 3x3x0.95 mm, and both mobile and stationary IoT applications can use the package for use in smart homes, offices, buildings, elder care, sports, and fitness wearables.

The BME680 measures the indoor air quality through its internal gas sensor by detecting a wide variety of gases in the range of parts per billion. The gases it can detect include hydrogen, carbon monoxide, and volatile organic compounds. While measuring altitude and pressure, the BME680 is accurate to within ±1 m and ±12 Pa respectively. Its temperature measurement capability extends from −40°C to +85°C, and it can measure relative humidity from 0% to 100%. In addition, the BME680 can measure an offset temperature coefficient of 1.5 Pa/K.

The BME680 consumes current according to its measuring parameter. While capable of operating from a supply voltage of 1.71 V to 3.6 V, it has a data refresh rate of 1 Hz. When measuring temperature and humidity, the BME680 consumes 2.1 µA, and 3.1 µA when measuring temperature and pressure. The current consumption goes up to 3.7 µA when measuring pressure, temperature, and humidity, while the maximum consumption is between 0.09 and 12 mA when the device is measuring gas, temperature, humidity, and pressure. Therefore, although the current consumption depends on its operating mode, its average current consumption in sleep mode goes down to 0.15 µA.

As an integrated environmental sensor, Bosch Sensortec has developed the BME680 specifically suited for mobile applications and wearables. As for both applications the size and low power consumption are key requirements, Bosch Sensortec has expanded its existing family of environmental sensors by adding the BME680 to its repertoire, while integrating the temperature, humidity, pressure and gas sensors, all of which are highly linear and highly accurate.

The BME680 comes in an 8-pin metal lid LGA package measuring only 3x3x0.95 mm. Bosch Sensortec has designed the sensor for optimized consumption that depends on its specific operating mode, high EMC robustness, and long-term stability. The specialty of the gas sensor within the BME680 is it can detect a wide spectrum of gases for assessing the indoor air quality for individual well-being. For instance, the BME680 can detect VOC or volatile organic compounds from alcohol, adhesives, glues, office equipment, furnishings, cleaning supplies, paint strippers, lacquers, and paints based on formaldehyde.

Applications for the BME680 are numerous. It can be used for altitude tracking as well as calorie expenditure for sports activities. It is sensitive enough for indoor navigation as it can detect change of floors and elevation. As GPS enhancement, it can improve time-to-first-fix, slope detection, and dead reckoning. As home automation control, the user can use the BME680 as an advanced HVAC control. Scientific experiments can use it for measuring volume and airflow, while agriculturists can use it as warning against dryness or high temperature. Sports enthusiasts can use it for monitoring fitness, well-being, detecting skin moisture, change in room, and for context awareness. BME680 is suitable for use as a personalized weather station and for indoor air quality measurement.

Working with Gas Sensors and the Raspberry Pi

Many devices predicted by earlier science fiction stories and movies have come true. Among them are gas detectors as envisaged by the TV series Star Trek. If you have a single board computer such as the Raspberry Pi (RBPi), you can use it to detect the type of gas and air quality around you. Of course, you will need to couple the RBPI with a gas sensor, and among the popular gas sensors available are the BME680 from Bosch, and the CCS811 from AMS.

Gas sensors are helpful in sniffing out volatile organic compounds, many of them not only poisonous but also flammable. Volatile organic compounds may be natural or manmade, including paints and coatings that require solvents to spread in a protective or decorative coating. Where earlier the paint and coating industry used toxic chemicals, they are now shifting towards aqueous solvents. Natural volatile organic compounds may come from direct use of fossil fuels such as gasoline or as indirect byproduct such as automobile exhaust gas.

Some volatile organic compounds may also be carcinogenic to humans. Among them are chemicals such as benzene, methylene chloride, perchloroethylene, MTBE, Formaldehyde, and more.

BME680

Bosch developed this tiny sensor BME680 specifically for applications involving mobiles and wearables that require low power consumption. This one sensor has high linearity, and measures temperature, humidity, pressure, and gas with high accuracy. This 8-pin LGA package is only 3 X 3 X 0.95 mm, and Bosch has optimized its power consumption based on the specific operating mode.

With high EMC robustness and long-term stability, the BME680 measures indoor air quality, while detecting a broad range of gases and volatile organic compounds. For instance, the BME680 can detect formaldehyde from paints, and other volatile organic compounds from paint strippers, lacquers, furnishings, cleaning supplies, glues, office equipment, alcohol, and adhesives.

Apart from applications for indoor air quality measurement, BME680 is also useful for applications such as personalized weather station, measuring skin moisture, detecting change in rooms, monitoring fitness, warning for dryness or high temperatures, measuring volume and air flow, altitude tracking, and more.

CCS811

Compared to the BME680, the CCS811 is only a digital gas sensor. It is meant for monitoring indoor air quality using a metal oxide gas sensor. The gas sensor can detect a wide range of volatile organic compounds. The CCS811 includes a micro-controller unit, an analog to digital converter, and an I2C interface.

With optimized low-power modes, AMS has designed the CCS811 for high volume and reliability. It has a tiny form-factor that saves more than 60% in PCB footprint, while producing stable and predictable behavior regardless of air quality at power up.

Similar to the BME680, the CCS811 also measures the total volatile organic compounds and the equivalent of calculated carbon di oxide. However, the consumption of CCS811 being about 60 mW, it may be necessary to have to supply it with an external supply of 3.3V.

Both sensors need the working I2C bus on the RBPi to interface and function. The software library for the two sensors are available here for the BME680 and here for the CCS811.