Autonomous driving requires the car to have radar sensors as its ears. Originally, the military and avionics developed radar for their applications. Automobiles typically use millimeter wave radar, with a working frequency range of 30-300 GHz, and wavelengths nearer to centimeter waves. These millimeter wave radar offer advantages of photoelectric and microwave guidance to automobiles, because of their significant penetration power.
Automobile collision avoidance mainly uses 24 GHz and 77 GHz radar sensors. In comparison with centimeter wave radar, millimeter-wave radar offers a smaller size, higher spatial resolution, and easier integration. Compared to optical sensors, infrared, and lasers, millimeter wave radar has a significantly stronger ability to penetrate smoke, fog, and dust, along with a good anti-interference ability. Although the millimeter band radar is essential for autonomous driving, heavy rain can significantly reduce the performance of radar sensors, as it produces a large interference.
Automobiles first used radar sensors in a research project about 40 years ago. Commercial vehicle projects started using radar sensors only in 1998. Initially, they were useful only for adaptive cruise control. Later, radar sensors have developed to provide collision warnings also.
Radar sensors are available in diverse types, and they have a wide range of applications. Automobile applications typically use them as FMCW or frequency-modulated continuous wave radars. FMCW radars measure the air travel time and frequency difference between the transmitted and received signals to provide indirect ranging.
The FMCW radar transmits a frequency-modulated continuous wave. The frequency of this wave changes with time, depending on another triangular wave. After reflection from the object, the echo received by the radar has the same nature of frequency as the emitted wave. However, there is a time difference, and this tiny time difference represents the target distance.
Another radar in common use is the CW Doppler radar sensor. These sensors use the principle of the Doppler effect for measuring the speed of targets at various distances. The radar transmits a microwave signal towards the target, analyzing the frequency change of the reflected signal. The difference between the two frequencies accurately represents the target’s speed relative to the vehicle.
Autonomous vehicles use radar sensors as their basic but critical technical accessories. The radar sensor helps the vehicle to sense objects surrounding it, such as other vehicles, trees, or pedestrians, and determine their relative positions. Then the car can use other sensors to take corresponding measures. Radar sensors provide warnings like front vehicle collisions and the initial adaptive cruise. Vehicles with autopilot radars require more advanced radar sensors such as LIDARs that offer significantly faster response speeds.
Autonomous vehicles must develop technologically. Autonomous driving basically requires an autonomous vehicle to quickly understand and perceive its surrounding environment. This requires the coordination of various sensors, allowing the car to see six directions and hear all. Reliable and decisive driving by an autonomous vehicle requires timely and accurate sensing of roads, other vehicles, pedestrians, and other objects around the vehicle.
Automotive electronics mainly uses radar sensors to avoid forward collisions, sideways collisions, backward collisions, automatic cruises, automatic start and stop, blind spot monitoring, pedestrian detection, and automatic driving of vehicles.