Raspberry Pi to Displace the Business PC

For a business establishment, maintaining PCs for each of their several hundred employees can be an expensive proposition. It is much simpler and cheaper to have a centralized workstation with several thin clients connecting to it. The ubiquitous single board computer, the Raspberry Pi (RBPi) is a suitable component for use as such a thin client.

As the low cost of the Raspberry Pi makes it a very attractive proposition for use as a thin client computer, Citrix is offering an HDX Ready Pi to replace the regular desktop PC. They are coupling the RBPi with virtual desktops such as the Citrix XenDesktop and the XenApp virtual apps. The combination is an ideal replacement for the traditional desktop PC and its IT refresh cycle.

At the heart of the project are two thin client operating systems, ThinLinX and TLXOS, based on Raspbian, the default OS for the Raspberry Pi. These provide the image for the RBPi and include the client and management software. Citrix is making use of these to instill an HDX SoC Receiver SDK within the securely locked-down Linux OS and the SDK provides full device management for updating firmware, remote configuration, and DHCP, making the RBPi a completely plug-n-play device.

Available fully assembled and ready-to-order from Citrix partners ViewSonic and Micro Center, the HDX Ready Pi thin-clients come preloaded with all the necessary software, power supply, flash storage, VESA mount option, all packaged in a production case. Any IT administrator can deploy these thin-clients in a matter of seconds.

Apart from being just a cheap PC alternative, these RBPI thin-clients offer businesses several new business paradigms. For instance, businesses now need not pay a premium for security and management of all their PCs, and they can expand their number of users to cover the entire organization.

The Citrix HDX Ready Pi is easy to set up. As it is small, distribution is simplified and employees can connect it up to an available display and be productive in a matter of minutes. IT can configure the management software, recognize the HDX Ready Pi in the network, take control of it, and point it automatically to the correct Citrix Storefront server. The user can then run any instant virtual app with desktop access.

As the RBPi thin-clients have no hard disks to fail, there is also no data and time wasted in diagnosing device problems. This eliminates all desk-side support, as any issue can be solved simply by swapping the device.

The low cost of thin-clients also eliminates treating them as trackable financial assets. Businesses can rather consider the Citrix HDX Ready Pi as non-capitalized office expenses, providing a compelling situation to virtualize remote branch offices all over the world.

As there is no provision to store or cache corporate data, businesses can safely distribute the HDX Ready Pi among employees for occasionally working from home over Wi-Fi or for teleworking. Employees can take the device home and use it safely for remote access.

Although the Citrix HDX Ready Pi has a Kensington lock slot, its low cost makes physical security almost a non-issue. Moreover, as the device is purpose-built for Citrix, it can be safely used as a pervasive computing device in an office campus or in public spaces.

Volumio for the Raspberry Pi

When you search for a networked stand-alone audio player with a touch screen, most likely chances are you will only find big consumer grade amplifiers. Those with network support may not have a touch screen or else may be very expensive. Most disappointing will be those having an issue with space and mobility. The best way out of this dilemma is to build one with the famous single board computer, the Raspberry Pi (RBPi).

You must start with an application that works on the RBPi. You can already find good quality DACs on the market. The makers of the application Volumio have used PCM1794A, the DAC from Texas Instruments with good results. As this is a 24-bit device, it can handle sample rates up to 200 KHz, and offers an 8x oversampling filter built-in.

The PCM1794A requires two voltages for proper functioning. It needs the 3.3 V for its digital part and the 5 V for its analog part. Although it seems possible to use the two voltages available on the GPIO expansion connector, the noise present on these voltages precludes their use for the DAC. Another possibility would be use the power supply for the DAC to power the RBPi. However, that is also not advisable, as this would mean degrading the power supply of the DAC. Therefore, the two devices need two distinctly different DC adapters.

For the I/V converter, another voltage is necessary and this has to be a negative voltage. The designers derived the negative voltage using the LM27761 IC, a special switched capacitor low-noise regulated voltage inverter. The IC is extremely small, only 2 x 2 mm, and operates at 2 MHz, introducing very little noise into the circuit.

Both the 5 V and 3.3 V required by the DAC are generated by ultra-low-noise positive linear regulators of the typeTPA7A4700 and TPS7A4901. Voltage dividers made by two resistors fix the output voltage, one pair for the 5 V and the other for the 3.3 V. A Schottky diode protects the input to the power supply against reverse polarity—it drops only 0.3 V from the single power supply of 7-8 V.

The 3.5-inch display goes above the Audio DAC. If necessary, use two standard-size stacking headers to place the display higher to clear the components. This will place the 25-way socket of the display above the Audio DAC PCB.

Performance

Plotting the amplitude of the output as a function of frequency shows the cut-off frequency at about 63.5 KHz. The total harmonic distortion plus noise was measured as a function of frequency with sampling rates of 48, 96, and 192 KHz shows it to be far lower than the acceptable limits—at 0.0007%. Although the RBPi generates several spurious frequencies that are just visible, the level for the fundamental frequencies is very low at -120 dB (1 µV). Those for the second and third harmonics are barely visible.

Various FFT analysis of a 16-bit, 1 KHz full-scale sine wave at different sampling rates shows the harmonic distortion to be far below the acceptable levels— at 0.002%. All these measurements show this tiny board to offer a great audio experience.

QSCR: Using A Wireless Hotspot To Charge Your Phone

Using the smartphone is always a pleasant experience, until the charge runs out. The only option left is to plug the phone into a charging arrangement, usually a mains-operated power supply that connects to the phone by a USB cable. The main disadvantage of this method is it limits the freedom of mobility of the phone until it is charged up again. That leaves people to wonder as to how long before smartphones could be charged wirelessly same as everyone uses Wi-Fi to link to the Internet.

Now, researchers at Disney Research have done the inevitable. They have discovered a method of charging electronic gadgets without using any type of cords or cradles. Not only can you charge a number of electronic devices through Wi-Fi anywhere in your room, you could simultaneously power fans, cellphones, and lights as well.

Quasistatic Cavity Resonance (QSCR), as the Disney researchers have named the technology, has been tested successfully during recent trials. The researchers generated near-field standing magnetic fields within a closed space. Filling a 16-ft. x 16-ft. room, these field waves were able to charge standard electronic gadgets within the room. However, the room needed to have special properties, such as metalized walls, floor, and ceiling.

Within this metal room, the scientists could generate magnetic waves suitable for charging several smartphones, glow a few lamps, and operate fans at the same time. In total, they transmitted about 1.9 KW of power, sufficient to charge about 320 smartphones simultaneously.

The trial has established that the innovative method has the capability to transfer electrical power as easily as Wi-Fi does. According to Alanson Sample, this could help power new applications for small mobile devices such as robots, as they would not need battery replacements or charging wires. Alanson is the principal research scientist and associate lab director at Disney Research.

Although the demonstration used room-scale wireless power, Alanson informs it could easily be scaled up to the size of a warehouse or down to the size of a toy chest.

Although wireless charging is not a new idea, it has always been a long-standing dream for many. In 1890s, Nicola Tesla had already demonstrated wireless lighting systems and proposed ideas of long distance power transmission without wires. However, none of that ever came into existence.

So far, transmitting power wirelessly has been accomplished only for short distances, mostly for charging stands or pads. However, the new technology, QSCR, will help to increase the transmission distance to many times over.

Once the researchers channeled electric power through the metalized walls, ceiling, floor of the room using the Quasistatic Cavity Resonance technique, there was enough uniform and strong magnetic fields inside the room. Receiving coils designed to intercept these magnetic field resonate at the same frequency because of capacitors placed across the coils. The induced currents within these coils can transfer the power at low frequencies to any device containing the receiving coils within the device. Making a room metalized is also not difficult, as it requires only a thin metallic coating on the walls.

RX300 – The Windows 10 Thin Client with the Raspberry Pi

The Raspberry Pi (RBPi) has no hard disk, is stateless, and can work as a desktop terminal, which makes it an ideal candidate for use as a thin client. It connects to the data center for all its applications, sensitive data, memory, and runs a Remote Desktop Protocol such as the Windows Terminal Services.

That makes the RBPi a virtual desktop computing model, as it runs virtualization software, and accesses hard drives in the data center. Thin client computing has thin clients, software services, and backend hardware as its components.

Users can use thin clients as a replacement for a PC to access any virtual desktop or virtualized application. This is a cost-effective way to create a virtual desktop infrastructure. NComputing is using the RBPi as a thin client, named as RX300, to access the Windows 10 desktop.

A central machine runs the NComputing vSpace Pro 10 desktop virtualization software, and streams several Windows desktops, including Windows 10. The virtualization software allows the centrally managed Windows desktop to be run on hundreds of RX300 clients.

According to NComputing, the vCAST streaming technology it uses for full-screen playback can do full HD as local or web video on the RX300s. This precludes the central server from needing a dedicated GPU. Once you buy the RX300, an automatic free subscription to the vSpace Pro 10 technology automatically kicks in, but only for twelve months.

Each RX300 is an RBPi 3 model B with four USB 2 ports. They have full USB redirection and server-side device drivers that offer support for a complete range of peripherals. While running the official Linux-based Raspbian Operating System, each RBPi RX300 runs as a thin client and accesses a virtual Windows 10 desktop.

According to NComputing, the RX300 thin clients are simple to configure and receive updates from the vSpace Pro 10 servers. The CEO of NComputing, Young Song says they selected the RBPi 3 as the base for its thin clients as the board is affordable and portable.

From its vSapce Pro 10, NComputing streams a Windows desktop to a single client. For streaming desktops to several clients simultaneously, vSpace Pro 10 must be running on the Windows Server 2016 or similar. Therefore, the user will also need to purchase appropriate licenses to access the Microsoft clients.

The price per seat of a thin client deployment has now dropped and they are more cost-effective as compared to regular PCs. By using RBPis as thin clients, this claim is a definite reality.

Several industries and enterprises are now switching over to thin clients. They may have different requirements, but all share a few common goals. IT personnel exploring such goals are equivocal about the benefits of thin clients—cost, security, manageability, and scalability.

The term thin client is derived from small computers in networks being clients and not servers. The goal is to limit the capabilities of thin clients to only essential applications. That makes them centrally managed, while not being vulnerable to malware attacks. They also have a longer life cycle, use less power, and are less expensive to purchase.

Dual Function LEDs & Multifunctional Displays

At the University of Illinois at Urbana-Champaign, researchers have made dual-function nanorod LEDs that could double as multifunctional displays. The researchers are also working with Dow Electronic Materials in Marlborough, Massachusetts. The LEDs are made of tiny nanorods arrayed in a thin film. They could enable new interactive functions and multitasking devices. The researchers report their advances in the February issue of the journal Science.

According to Moonsub Shim, Professor of materials science and engineering at the University, the new LEDs will enable displays to be much more interactive devices, rather than just displaying information as they do now. This might form the basis of several new and interesting designs for several types of electronic gadgets.

Three types of semiconductor materials make up the tiny nanorods, each of them less than 5 nanometers in diameter. The first type emits and absorbs visible light. The other two semiconductor materials control the amount of charge flowing through the first. This combination allows the LEDs to emit light, while sensing and responding to light falling on it.

By switching between the emitting and detecting modes very quickly, the nanorod LEDs can perform both functions with ease. In fact, they are so fast in switching—three times faster than the standard display rates—the display seems to be permanently on. Because the LEDs are simultaneously detecting and absorbing light as well, a display of such LEDs may be made to respond to light signals in different ways, simply by programming them suitably. For instance, a display could automatically adjust its brightness in response to ambient light conditions. Although a separate light level sensor does this for the present displays, the new display could do it by sensing the ambient light on each pixel.

According to Professor Shim, for someone sitting outside with a tablet, reading will be easier on the eye, as the tablet will adjust its brightness based on ambient light on individual pixels of the display. For instance, the part of the display under a shadow falling across it will be dimmer than the part directly illuminated by sunlight. This will help to maintain a steady contrast.

The researchers were able to program individual pixels adjust their brightness automatically in response to an approaching finger. This response, once integrated into interactive displays, could allow the display to respond to recognizing objects through non-touch gestures.

Writing or drawing with light would also be possible with such displays. This could form the basis of smart whiteboards, tablets, or other such surfaces, on which a laser stylus could write or draw. Moreover, the researchers have discovered the LEDs not only respond to light, they convert it to electricity as well.

They found the LEDs responding to light just as solar cells do. Therefore, apart from enhancing the interaction between users and displays, it is also possible to actually use the displays to harvest light, for instance, to charge the cellphone when it is simply sitting idle, collecting ambient light. That means there is no need of integrating a separate solar cell on the display.

Different Types of Industrial Cables

To wire up different components within electronic gadgets, hook-up and lead wires may be adequate, but the electric industry needs a vast variety of industrial cables to remain connected. Chief among these are power cables to carry high voltages and currents, and cables necessary for industrial automation and process control. Cables may conform to multiple standards such as UL, CSA, and others. Cables often have to transmit power or signal in industrial environments that may harbor the harshest conditions involving physical abuse, high temperature, ozone, chemicals, oil, and other demanding situations.

Challenges and Solutions

With increasing demand from the industry, manufacturers are producing cables for automation and seamless data communication. To support proliferation of mission-critical signal transmission, cable manufacturers offer high quality, high-availability line of industrial cabling and connectivity products.

Seamless Connectivity from the Enterprise to the Sensor

For the most robust and reliable factory networking, manufacturers also offer network switches, I/O modules, and other devices. Users choose their cables from a vast selection of configuration, insulation and jacket materials, shielding options, high-flex capabilities, and other options.

Manufacturers must maintain product consistency for ease of termination and assembly. For instance, precise control of diameters of jacket and insulation along with thickness of concentric wall ensure fast and reliable supplication in automated high-speed equipment.

Shielding

Depending on their use, industrial cables also require highly effective protection from EMI and RFI. There is increasing demand for innovative designs with shielding technology using foil and braid configurations. Manufacturers offer 100% shield coverage improving the protection over a wide range of frequencies. Apart from this, cables also require electrostatic shielding, and sometimes, extra insulation and mechanical strength. Overall, the cable shielding needs to be lightweight, strong, flexible, thin, but extremely effective.

Armoring

For cables requiring maximum physical protection in the harshest of environments, armoring technology is the solution. Armoring offers added advantages such as reduced cost of conduit, easier installation and re-routing, while it provides additional shielding.

Typical armoring of power, instrumentation, and data cables involves interlocking aluminum or steel armor, or continuous corrugated armor of aluminum. Some manufacturers also offer cables with corrugated or smooth protective metal tapes.

Insulation and Jackets

Cable manufacturers offer a large variety of insulation and jacket compounds, often their own formulation. These provide superior performance under different hostile environmental conditions. Cables are typically graded as Class I, II, or III, according to whether they are suitable for hazards differentiated by Division 1 or 2.

For instance, cables suitable for Class I, Division 1 Hazards are used in locations where flammable vapors or gases may exist under normal operating conditions. Cables suitable for Class III, Division 2 Hazards may be used in locations that contain easily ignitable flyings and fibers under abnormal conditions.

Intrinsically Safe

Not all environments need be hostile. Occasionally, under normal or abnormal conditions, equipment and wiring may be incapable of releasing adequate amounts of electrical energy to ignite a susceptible, specific hazardous atmospheric mixture. Manufacturers offer cables with light blue color with approved sealing and separation for use in such situations.

Cable manufacturers offer the most comprehensive line of industrial cabling solutions today. This helps not only for networking on the factory floor or process equipment and devices to their controllers, but also to the control room, and for relaying data between the engineering department, control room, and various office sites or remote manufacturing locations.

What Influences Industrial Connectivity?

In the industry, any component coming in the path of delivering control signals or power to do useful work is termed industrial connectivity. For instance, components including relays, motor starters, terminal blocks, and connectors are all typical connectivity components.

Generic connectors can use low-cost material as they merely maintain electrical continuity. However, based on operating environments, connectors are differentiated into four categories: hermetic, military, industrial, and commercial. While hermetic connectors offer maximum exclusion of their inner structural materials from the elements, military and industrial connectors handle more rugged environments with hazards including thermal shock, vibration, corrosion, physical jarring, dust, and sand. Most commercial applications do not make such extreme demands of connectors, and therefore, atmospheric and temperature conditions are the least critical factors that affect the performance of commercial connectors. This allows designers to select from different connector materials.

Brass

This is a metal alloy made from copper and zinc, with manufacturers varying the proportions to create varying properties. Although brass has excellent conductivity, it cannot withstand abrasion from many cycles of insertion and withdrawal. It undergoes crystallization under repeated stress and loses flexibility as it ages. Suitable for non-critical and low-contact-force applications, it is easy to braze, weld, solder, and crimp brass.

Beryllium Copper

With excellent electrical, mechanical, and thermal properties, beryllium copper easily resists corrosion and wear. Among all copper-based spring alloys, beryllium copper is stronger and more resistant to fatigue, while able to withstand repeated insertion and withdrawal cycles. However, it is the most expensive among all basic contact materials.

Nickel-Silver Alloys

Not always requiring plating, nickel-silver alloys resist oxidation. While contacts made of nickel-silver alloys are susceptible to stress corrosion, the extent does not exceed that of brass.

Gold

Gold, a highly stable plating material, is an excellent conductor inferior only to silver and marginally so to copper. With the lowest contact resistance and providing the best protection from corrosion, manufacturers use hard gold plating for contacts experiencing frequent insertion/withdrawal cycles. For even greater frequency of cycling, gold impregnated with graphite offers only a slight increase of contact resistance.

Silver

A general-purpose plating metal for power contacts, silver has a poor shelf life and tarnishes when exposed to the atmosphere. Although this increases the contact resistance, the oxide coating does not affect contacts carrying higher currents.

Nickel

With good corrosion resistance, nickel offers low contact resistance and fair conductivity. Therefore, it is used as an undercoat to prevent migration of silver through gold in high-temperature environments. Although it has good wear resistance, nickel may crack during crimping unless properly plated onto the base material.

Rhodium

Manufacturers use rhodium for contacts that need exceptional wear qualities. Although conductivity of rhodium is lower than that of gold or silver, the higher resistance is acceptable for thin coatings.

Tin

Providing good conductivity and excellent solderability, tin offers a low-cost finish and poor wipe resistance. This makes it the most suitable for connections requiring only very few mating cycles. Tin, not being a noble metal, will corrodes easily.

Gold-Over-Nickel

This is a widely used plating combination as it offers the surface qualities of gold, while minimizing the amount of gold required. The hard under-plating of nickel prevents migration of the base metal.

Diamondoids Make Three Atoms Wide Wires

At the SLAC National Accelerator Laboratory of the Department of Energy, and the Stanford University, scientists have discovered a new method of using diamondoids. These extremely tiny bits of diamonds, these diamondoids can be used to assemble atoms into the thinnest possible electrical wires—only three atoms wide.

The diamondoids do this by grabbing different types of atoms and bringing them together as is done in LEGO units. The scientists are of the opinion this new technique has the potential of creating tiny wires suitable for a wide range of applications. This could include fabrics for generating electricity, superconducting materials for conducting electricity without any loss, and optoelectronic devices employing both light and electricity. The scientists have reported their findings in Nature Materials.

According to Hao Yan, a lead author of the paper and a postdoctoral researcher at Stanford, the process self-assembles tiny, conductive wires of the smallest possible size. The process involves simply dumping the ingredients together, with the results coming in only half an hour.

The researchers have made an animation to show the molecular building blocks joining the tip of the growing nanowire. In each block, there is a diamondoid, attached to sulfur and copper atoms. Just as LEGO blocks do, the diamondoids only fit together in specific ways that their shape and size dictate. While the insulating diamondoids form an outer shell, the sulfur and copper atoms make up a conductive wire in the center.

Although several methods exist for self-assembly of materials, the method with diamondoids is the first one to make a nanowire with a solid, crystalline core. According to a co-author of the study Nicholas Melosh, the core also has good electronic properties.

The semiconducting core of the needle-like wires—a combination of copper and sulfur, known as chalcogenide—is surrounded by an insulating shell formed by diamondoids.

According to Melosh, this miniscule size is very important. In reality, the material exists in only one or two dimensions—as wires or sheets of atomic-scale dots. At these dimensions, the material has very different properties, extraordinarily different compared to those of the same material when made in bulk. With the new method, researchers were able to assemble the materials with atomic precision and control.

The scientists used the diamondoids as assembly tools, as these are tiny, with interlocking cages of carbon and hydrogen. The SLAC laboratory extracted and separated the diamondoids by size and geometry from petroleum fluids, where the diamondoids occur naturally. Melosh and professor Zhi-Xun Shen from SLAC/Stanford are leading a SIMES research program over the past decade. They have found several potential uses for the diamondoids. This ranges from making tiny electronic gadgets to improving electron microscope images.

The research team found that tiny diamonds attract each other strongly—through van der Waals forces—a fact they exploited. Because of this attraction, the microscopic diamondoids can clump together much the same way as sugar crystals do, this being the only reason they are visible to the naked eye. The scientists started with the smallest possible dimensions of the diamondoids. They used single cages containing just 10 carbon atoms, to each of which they attached a sulfur atom. When the sulfur atom bonded with a single copper ion, it created the basic building block for a nanowire.

RS485 Relay Output Module for the Raspberry Pi

Although many consider the RS485 relay output module as an archaic protocol, it is still important to the industry. The RS485 protocol allows up to 32 devices to communicate through the same data line over a cable length of up to 4000 feet with a maximum data rate of 10 Mbps. Not many other protocols can equal those numbers.

The single board computer, the Raspberry Pi (RBPi) is increasingly finding its way into more and more industrial applications. However, the limiting factor for most compatible relay modules is the number of contacts available, which are either too few, or limited by the GPIO pins used.

The RS485 relay interface overcomes this limiting factor. Modules such as the Pi-SPi-RS485 and VP-EC-8K0 support the Modbus protocol. That offers the industrial user up to 253 modules at eight relays per module, theoretically making it possible to use 2,024 relays from one interface. Practically, there are two limitations.

According to the hardware protocol, the RS485 relay can support up to 32 unit loads, before a repeater/amplifier becomes necessary for the next batch of loads. Popular modules use the Texas Instruments RS485 drivers such as the SN65HVD72DR half-duplex IC, which according to the TI data sheet, allow only up to 200 unit loads.

In addition, the hardware protocol of the RS485 relay output module specifies the maximum distance between the extreme ends of the RS485 transmission line cannot exceed 4000 feet. For greater distances, a repeater/amplifier becomes necessary.

Therefore, for any industrial application requiring serious outputs such as few hundreds of easily configurable relays, each with 10 A SPDT contacts with MOV protection, where the distances are within 4000 feet between all modules, the RS485 modules for the RBPi are a perfect fit. Some modules are field ready as they have an optional DIN rail enclosure.

RS485

RS485 is an industrial standard for transmitting serial data via a hard-wired cable—EIA/TIA-485 defines the system. RS485 offers the ability of multi-drop cabling with data speeds of up to 10 Mbps over 50 feet, and slower communication speeds of 100 kbps for up to 4000 feet. Industrial applications such as data acquisition widely use the RS485 protocol.

Simple networks often use RS485 links, connected in 2- or 4-wire mode. A typical application may have several addressable devices linked to a single controller, PC, or SBC such as the RBPi. This typically uses a single line for communication.

Using simple interface converters, linking systems using the RS485 and RS232 protocols is possible. This may include optical isolation between the two circuits. It is also possible to incorporate surge suppression for any electrical spikes that the communication line may pick up.

RS485 makes it easy to construct a multi-point data network for communication. According to the protocol, you can have 32 nodes capable of both transmitting and receiving. Furthermore, you can easily extend this capability further by using automatic repeaters and using high-impedance drivers/receivers. That means hundreds of nodes can exist on a network, extending the common mode range for both drivers and receivers with tri-state and power off modes for power saving.

Importance of Resolution in Thermal Imaging

Thermal imaging technologies have long been associated with a range of applications and industries for discovering abnormalities and weak points quickly and efficiently. These technologies are ideal for production monitoring and other applications as materials and components undergo non-destructive testing under operating conditions. That allows discovery of the problem before a breakdown can occur or a fire risk can develop.

For instance, thermal imaging allows contractors in a building, facilities maintenance, HVAC, and in electrical industries to visualize situations they are facing—they know where to start with as job, and it saves them time and effort. That means they can improve their efficiency, ultimately providing faster service to customers.

Resolution of the image is very important in thermal imaging. The details matter when using thermography for detecting leakages, cold bridges, mold, or overheated components. Most such elements are visible only when the resolution of the image is 160×120 pixels or more. As the technology uses each pixel as a measurement point, measuring accuracy improves with higher resolution. Accurate measurements are necessary for detecting irregularities earlier, avoiding unnecessary damages for you and the customer.

Using a camera with exceptional resolution has additional advantages. It is not necessary to be near the abnormality when capturing its thermal image, thereby leaving the image quality unaffected. Low-resolution thermal images can be unclear, and may not offer true or accurate readings. Therefore, industrial thermal imaging practically starts from a resolution of 160×120 pixels, as this is the minimum to offer true value.

Several industries use thermal imaging. However, for the best application of this technology, it is necessary to use a robust, quality camera. Here are some examples where thermal imaging is a huge advantage:

Heating Installations

A thermal camera can make visible a leaking pipe hidden under plaster, which is impossible to locate with the naked eye. Similarly, it is easy to visualize under the floor heating courses, and check the performance of a radiator non-intrusively. In addition to the resolution, it is necessary to have a thermal sensitivity of at least 100 mK.

Inspection of Switching Cabinets

A temperature rise usually precedes a malfunction in a switching cabinet. Using a high-resolution thermal camera, not only can one measure this rise, but also visualize the location of the heat source. As all this happens without contact, it is impossible to miss an overheated contactor, an insufficiently tightened clamp, or an overloaded cable.

Discovering Defects in Buildings

Detecting sealing and insulation defects or discovering and analyzing cold bridges in buildings can be done far more quickly and accurately using thermal imaging than with any other tool. Apart from initiating preventive measure timely, this ensures building quality, while impressing the customer with the visual representation of the quality of workmanship.

Identifying Dangers from Mold

With high-quality thermal imaging, it is easy to calculate the value of humidity at each measuring point. The calculation depends on the externally measured ambient temperature, the humidity of air, and the determined surface temperature. The imager has a humidity palette, which represents the different risk zones with the principle of traffic lights—Green for no risk, Amber for caution, and Red for danger.