What are Multilayer Chip Capacitors?

The electronics industry uses various types of capacitors in its circuits. These capacitors provide different capabilities and functionality depending on the type and construction. One of the most prevalent types of capacitors is the MLCC or multilayer ceramic capacitor.

Most MLCCs are applicable to circuits that require small-value capacitance. They are preferably useful as filters, in op-amp circuits, and bypass capacitors. This is because MLCC offers small parasitic inductance as compared to aluminum electrolytic capacitors. Therefore, MLCC offers better stability over temperature, subject to their temperature coefficient.

MLCC is available in three categories or classes. The Class I type of ceramic capacitors offer low losses and high stability in resonant circuits. Although they do not require aging corrections, their volumetric efficiency is low. Class II and Class III offer high volumetric efficiency, but their stability is not as good as that of Class I capacitors. Once outside the referee time of the manufacturer, Class II and Class III capacitors may require aging corrections. Manufacturers specify the referee time during which the capacitor will remain within the tolerance range.

Alternating layers of dielectric ceramic and metallic electrodes make up an MLCC. This structure makes them physically small but does not provide them with volumetric efficiency. Design engineers selecting MLCC for electronic applications look for two important parameters—voltage rating and temperature coefficient.

The voltage rating of the MLCC indicates the maximum safe voltage the circuit can apply across the capacitor terminals. For enhanced reliability, designers use a capacitor with a voltage rating higher than it will experience in the circuit. One advantage over electrolytic capacitors is that MLCCs are non-polarized. Therefore, it is possible to connect MLCC in any position without damage.

The temperature coefficient of an MLCC depends on its Class category. If the capacitor contains Class I ceramic material, it will have a very low-temperature coefficient, which means, a change in temperature will minimally affect the capacitance. Class I MLCC also tends to have low dielectric constants, which means the material offers very small capacitance per volume. For instance, C0G and NP0 type Class I MLCC feature a 0 temperature coefficient with a tolerance of ±30 ppm.

Class II MLCC, although less stable over temperature, contains ceramic material with a higher dielectric constant. That means Class II MLCC can have more capacitance in the same volume compared to that of Class I. Class II MLCC are available in X, Y, and Z temperature coefficients. For instance, X7R is a common Class II MLCC, and can operate within a temperature range of -55 °C and +125 °C with a tolerance of ±15%. X5R MLCC can operate within a temperature range of -55 °C and +85 °C with a tolerance of ±15%. Y5V MLCC can operate within a temperature range of -30 °C and +85 °C with a tolerance of +22/-82%. MLCCs with wider temperature ranges are also available with the higher stability of temperature characteristics. However, these capacitors tend to cost more.

Engineers use several capacitors with various values in parallel or series for providing the requisite impedance over a wide range of frequencies.

Three-Phase Monitor Relays Protect Expensive Machinery

Three-phase motors power many industrial and commercial machines. One can find these machines in material handling, water treatment, air conditioning systems, ventilation, heating, marine, machine tools, and aviation applications. However, a range of fault conditions can damage these reliable devices when not addressed quickly. This can lead to a shortened operating lifetime or even a failure, resulting in significant repair costs and downtime.

Phase monitoring relays can detect these faults, notify the operators, and stop the machinery before it develops permanent damage. These relays detect the presence of all three phases, their correct sequence, and that all phase voltages are within the specified range. Should an error develop, the relay opens a set of contacts, initiating an alarm condition, and powers down the machine. There are many types of phase-sensing relays. They can handle a wide range of phase configurations, voltages, and errors.

Among the common failure modes of three-phase motors, are those related to their three-phase power source and their effects on the motor. An imbalance in the phase voltages, or a loss in one of the three phases, can result in the remaining phases driving higher-than-normal currents into the motor. This can lead to a loss of rotational power and excessive vibrations. Likewise, over-voltages and under-voltages can force the motor to draw excess current for driving the same load, and this can shorten the life of the motor. An incorrect phase sequence may cause the motor to reverse the direction of rotation. This can have significantly disastrous results on the load connected to the motor.

Phase monitoring relays monitor the state of the three-phase power source. The three-phase lines that they monitor also power them. Apart from the phase sequence, they also monitor the loss of any phase voltage. Only when all the phases are present, and are in the correct sequence, do the relays activate. Whenever there is a loss of any phase, or the phase sequence is incorrect, the relays de-energize.

Some phase monitoring relays also have the capability to monitor the voltage levels of all three phases. This typically uses a true root-mean-square measurement. The relay deactivates whenever the voltage drops below a preset threshold. Some relays also offer adjustable limit settings along with voltage detection. Other relays monitor phase asymmetry along with tolerance. Typically, phase monitoring relays offer a delay before actuation. This prevents spurious activation from temporary voltage levels or asymmetry issues. In some models, the delay is adjustable.

The DPA01CM44 is an example of a three-phase monitoring relay meant for three-wire configurations. The three-phase source powers the relay. Relay models available operate at voltages of 208, 230, 400, 600, and 690 VAC. Although relays for mounting on DIN rails are typical, plugin models are also available. The relay output configuration can be single or dual SPDT contacts.

Normal voltage and phase conditions allow the relay to remain activated. That means, the normally open contacts of the relay output remain closed. Abnormal conditions make the relay operate within 100 milliseconds. The front panel on the relay has status LEDs to indicate relay activation and power on.

What is Capacitance to Digital Converter Technology?

The healthcare industry has witnessed many advancements, innovations, and improvements in electronic technology in recent years. Healthcare equipment faced challenges like developing new treatment methods and diagnoses, home healthcare, remote monitoring, enhancing flexibility, improving quality and reliability, and improving ease of use.

A comprehensive portfolio of these technologies includes digital signal processing, MEMS, mixed-signal, and linear technologies that have helped to make a difference in healthcare instrumentation in areas such as patient monitoring and imaging. Another is the capacitance to digital converter technology that offers the use of highly sensitive capacitance sensing in healthcare applications. For instance, a capacitive touch sensor is a novel user input method that can be in the form of a slider bar, a push button, a scroll wheel, or other similar forms.

In a typical touch sensor layout, a printed circuit board may have a geometric area representing a sensor electrode. This area forms one plate of a virtual capacitor, while the user’s finger forms the other plate. For this system to work, the user must essentially be grounded with respect to the sensor electrode.

Analog Devices has designed their CapTouch controller family of ICs, the AD7147/ AD7148, to activate and interface with capacitance touch sensors. The controller ICs measure capacitance changes from single-electrode sensors by generating excitation signals to charge the plate of the capacitor. When another object, like the user’s finger, approaches the sensor, it creates a virtual capacitance, with the user acting as the second plate of the capacitor. A CDC or capacitance to digital converter in the ICs measures the change in capacitance.

The CDC can measure changes in the capacitance of the external sensors and uses this information to activate a sensor. The AD7147 has 13 capacitance sensor inputs, while the AD7148 has eight. Both have on-chip calibration logic for compensating for measurement changes due to temperature and humidity variations in the ambient environment, thereby ensuring no false alarms from such changes.

Both CDCs offer many operational modes, very flexible control features, and user-programmable conversion sequences. With these features, the CDCs are highly suitable for touch sensors of high resolution, acting as scroll wheels or slider bars, requiring minimum software support. Likewise, no software support is necessary for implementing button-sensor applications with on-chip digital logic.

The CDCs function by applying an excitation signal to one plate of the virtual capacitor, while measuring the charge stored in it. They also make the digital result available to the external host. The CDCs can differentiate four types of capacitance sensors by changing the way they apply the excitation.

By varying the values of these parameters, and/or observing the variations in their values, the CDC technology directly measures the capacitance values. The distance between the two electrodes affects the output of the CDCs in inverse proportions.

The family of Analog Device CDCs, the AD714x, AD715x, and AD774x, are suitable for applications involving a wide range of functions. These involve various input sensor types, input ranges, resolutions, and sample rates. Applications involve liquid level monitoring, sweat detection, respiratory rate measurement, blood pressure measurement, and more.

Space Saving Molex Connectors

With manufacturing processes and semiconductor materials going through new developments at break-neck speeds, we now have a proliferation of increasingly smaller sensors, devices, and processors. However, some areas are still facing hindrances in technological advancements because of space limitations, thereby slowing down user adoption.

One such area is the AR/VR or augmented- and virtual reality applications. These technologies, typically AR, superimpose an image over a view of the user’s actual environment. A handheld device can accomplish this, such as a smartphone. Others can be user-worn glasses, headsets, or a projection such as heads-up displays in vehicles.

AR technology commonly includes offering information about the environment around the user, for gaming or for safety reasons. On the other hand, VR technology immerses the user in a virtual environment. That means, VR implementation typically requires the use of a headset, completely covering the user’s eyes, thereby blocking out the world around them.

However, the adoption of AR and VR has so far been limited, and these have remained relatively niche markets. The primary reason for this is their footprint. For instance, AR use requires wearing bulky glasses, lenses, or headwear, or, holding the smartphone up to view the AR environment. Wearing such heavy, unbecoming devices for any duration can be very uncomfortable.

For engineers, the size of connectors has been one of the biggest challenges when they try to limit the size of devices for embedded and wearable systems. Although semiconductor sizes have progressively reduced, communication devices have stayed the same. Therefore, even with custom cabling, the cable size and its corresponding connector are the factors limiting the system size.

For the success of AR and VR solutions, it is necessary for their form factor to be small, comfortable, and lightweight for the user. These technologies also demand significant processing power as well as high-quality displays. Meeting this demand requires design engineers to use connectors that offer not only robust communication capabilities, but also minimize the weight and footprint.

Molex is now offering a quad-row connector that meets the above needs. The package is significantly smaller than those available in the market while offering many connectivity options.

The quad-row connector from Molex offers its performance gains because of its staggered-circuit layout that offers a 30% space-saving over the design of its competitors. The quad-row connector achieves this as it positions its pins across four rows with a pitch of 0.175 mm. Such a staggered-circuit layout is a substantial space-saver in many applications involving wearable, smartphones, smartwatches, and AR and VR devices.

According to Molex, users can also have a soldering pitch of 0.35 mm in the quad-row connectors. This matches with the standard surface-mount technology processes. That means that as electronic devices gain popularity and size reduction, manufacturers can scale their products by shifting to the 0.175 mm soldering pitch. These connectors from Molex can also integrate into moving objects, and withstand drops, vibrations, and other harsh conditions of use. Molex builds its quad-row connectors with interior armor and insert-molded power nails, making them substantially reliable and robust. The connectors are available in 32- and 36-pin varieties, with 64-pin configurations for the future.

Magnetic Position Sensing in Robots

Robots often operate both autonomously and alongside humans. They greatly benefit the industrial and manufacturing sectors with their accuracy, efficiency, and convenience. By monitoring motor positions at all times, it is possible to maintain not only system control but also prevent unintentional motion, as this can cause system damage or bodily harm.

Such monitoring of motor positioning is possible to implement by contactless angle encoding. It requires a magnet mounted on the motor shaft and provides an input for a magnetic encoder. As dirt and grime do not influence the magnetic field, integrating such an arrangement onto the motor provides a compact solution. As the encoder tracking the rotating magnet provides sinusoidal and 90-degree out-of-phase components, their relationships offer quick calculations of the angular position.

As the magnet rotates on the motor shaft, many magnetic encoding technologies can offer the same end effect. For instance, Hall-effect and magnetoresistance sensors can detect the changing magnetic field. 3D linear Hall effect sensors can help with calculating angular positions, while at the same time, also offering compensations for temperature drift, device sensitivity, offset, and unbalanced input magnitudes.

Apart from signal-chain errors, the rotation of the magnet also depends on mechanical tolerances. This also determines the quality of detection of the magnetic field. A final calibration process is necessary to achieve optimal performance, which means either harmonic approximation or multipoint linearization. With calibration against mechanical error sources, it is possible for magnetic encoding to achieve high accuracy.

The driving motor may connect directly to the load, through a gearbox for increasing the applied torque, through a rack and pinion, or use a belt and screw drive for transferring energy elsewhere. As the motor shaft spins, it transfers the kinetic energy to change the mechanical position somewhere in the system. In each case, the angle of the motor shaft correlates directly to the position of the moving parts of the system. When the turns ratio is different from one, it is also necessary to track the motor rotations.

Sensorless motor controls and stepper motors do not offer feedback for the absolute position. Rather, they offer an estimate of the position on the basis of the relative change from the starting position. When there is a loss of power, it is necessary to determine the actual motor position through alternate means.

Although it is possible to obtain the highest positional accuracy through the use of optical encoders, these often require bulky enclosures for protecting the aperture and sensor from contaminants like dirt and dust. Also, it is necessary to couple the mechanical elements to the motor shaft. If the rotational speed exceeds the mechanical rating of the encoder, it can lead to irreparable damage.

No mechanical coupling is necessary in the case of magnetically sensed technologies like magnetoresistive and Hall-effect sensors, as they use a magnet mounted on the motor shaft. The permanent magnet has a magnetic field that permeates the surrounding area, allowing a wide range of freedom for placing the sensor.

RF MEMS Switches for 5G Networks

For high-power RF designs like 5G networks, Menlo Micro has added an RF MEMS switch that contains an integrated driver circuit for a charge pump. The RF MEMS switch operates from DC to 6 GHz.

The new RF switch from Menlo Micro is one of a family of SP4T or single-pole/four-throw, DC-t0-6 GHz switch, and is meant for 5G infrastructure, measurement, and testing equipment involving high-power RF switching applications. Menlo Micro is using its own Ideal Switch technology for the high integration MM5140 SP4T switch. The technology gives the new switch power handling capability up to 25 W, an ultra-low insertion loss, and the highest linearity in the industry. The MM5140 SP4T switch easily outperforms all types of traditional solid-state switches and electromechanical relays.

The MM5140 SP4T switch performs RF operations at high power levels over a wide temperature range of -40 °C to +85 °C, delivering superb linearity from DC to 6 GHz. 5G RF applications demand significant reductions in distortion, which the switch’s IP3 of 95 dBm provides conveniently.

Menlo Micro has custom designed a built-in high-voltage charge pump or driver circuit and integrated it into the LGA package of the MM5140 SP4T switch. The charge pump circuit has both GPIO and SPI digital interfaces so that any test system or host processor can keep control over it.

Although the new module has the existing MM5130 at heart, it also has the CMOS charge pump driver ASIC, driver circuitry, and other peripheral passive components in its 5.2 X 4.2 mm package.

As the MM5140 SP4T switch is a single-pole four-throw device, the voltage must route over to each of the four gate lines. This requires the presence of either a MOSFET drive circuit or a dedicated multiplexer IC. Along with the integrated charge pump and the driver circuitry, the MM5140 SP4T switch saves board area and bill of materials.

The integrated passive components include a large capacitor that the charge pump requires for handling the high voltage that drives the MEMS. This helps reduce the BOM for passive components.

The difference between the MM5130 and the MM5140 is their operational speed. The MM5130 is a design meant to operate at higher frequencies, such as the microwave band. The design of the MM5140 is meant for a sub-6 GHz application. The MM5140 comes in an LGA package rather than the WLCSP of MM5130. That makes it easier for customers to design their boards, as the LGA package has a bigger pitch.

Moreover, Menlo Micro has eliminated some external components for the MM5140 design reduces its complexity. This helps in simplifying RF front-end development including receivers and transmitters, beamforming antennas, and RF filters. These are necessary for radar systems and advanced radio architectures.

5G base stations typically use RF/microwave solid-state switches and RF electromagnetic relays that the MM5140 SP4T switch can replace. The replacement offers significant improvements over the competing technologies, especially in the integrated capability, BOM count reduction, and real-estate savings on the board. Moreover, the MM5140 SP4T switch exhibits far better reliability over the other competing technologies.

Wi-Fi 5.0 to Wi-Fi 7.0

Both on smartphones and in living rooms, the audio & video streaming revolution is producing an insatiable demand for speed and bandwidth. To satisfy this demand, in the early 2010s, we had the Wi-Fi 5. However, this lasted only for a decade or so, because by then, consumers had bidirectional video applications such as Webex, WhatsApp, and other social media uploads like TikTok. These had begun to alter not only the consumer landscape but also that of the enterprise.

That led to the catapulting of Wi-Fi 6 to the arena for better management of the huge traffic of streamlining wireless transmissions. This was followed by Wi-Fi 6E which literally extended the benefits of its predecessor with the availability of the 6 GHz band. The pandemic of Covid-19 in 2020 was the moment for Wi-Fi 6 and Wi-Fi 6E, as is evident from the 1+ billion chips of Wi-Fi 6 and Wi-Fi 6E that Broadcom shipped in the past three years.

And still, the demand for higher bandwidth and speed continues only to increase. A recent study has shown that consumer spending on games has increased by 40%. This involves not only devices operating at higher speed, but also the use of newer technology like AR or augmented reality and VR or virtual reaility headsets as new gaming devices. While these devices demand unprecedented levels of immersion while playing, they also call for deterministic and reliable wireless data.

So, we are now moving towards Wi-Fi 7. It has the ability to incorporate 320-MHz channels into the 6 GHz band and employ the 4096-QAM modulation technique, thereby effectively doubling the channel bandwidth. Additionally, it employs better technologies for lowering latency and bolstering determinism. These include AFC or automatic frequency coordination and MLO or multi-link operation.

Wi-Fi 7 comes with spectrum flexibility spanning three bands. However, the critical role is played by the incorporation of 320 MHz channels into the 6GHz band for doubling the speed. For boosting the coverage and the overall network performance, there is the 4096-QAM technique that plays a crucial role.

Wi-Fi 7 can rapidly aggregate channels in congested, high-density networks. This is due to its MLO or multi-link operation that significantly improves its deterministic performance. By rapidly switching traffic among several channels, Wi-Fi 7 can drive greater capacity, thereby facilitating commercial-grade QoS or quality of service in its networks.

Another technology that Wi-Fi 7 utilizes is AFC or automatic frequency coordination. This technique allocates optimum spectrum, thereby enabling high-power access points and extending the 6 GHz range outdoors and indoors. According to Broadcom, its Wi-Fi 7 designs with AFC are capable of 63 times greater transmitting power. This helps not only to extend the range but also the coverage of the 6 GHz band in use.

Therefore, with its immense focus on speed, latency, and determinism, Wi-Fi 7 has entered our lives and is here to stay. According to the forecast of industry technology analysts, revenue from Wi-Fi 7 will supersede that from any other Wi-Fi technology so far in the next five years.

What are Piezoelectric Audio Devices?

The piezoelectric effect is a versatile and extremely useful phenomenon. Engineers have adopted this phenomenon in various transducer applications. Some of these applications involve transforming the applied voltage to mechanical strain output, for use as a basic source of sound. In a complementary mode, the application of mechanical stress to the Piezo material causes the rugged sensor to produce a voltage. Piezoelectric devices are low-cost, reliable, and rugged, and this allows engineers to exploit their unique properties.

Piezo-based speakers offer many attributes as sound sources. Unlike electrodynamic speakers, piezo-based speakers can be relatively thin, yet create very high sound pressure levels. However, mechanical and physical material issues can limit their audio quality. Now, a team at MIT is changing all this. They have developed a dense array of tiny dome speakers that they have based on Piezo technology. They have significantly transformed the classic analog function of loudspeakers. Their new loudspeakers are paper-thin, very flexible, and fully capable of turning any surface into an active audio source.

Although there are conventional thin-film loudspeakers, the basic requirement is the film must be free to bend to produce sounds. Firmly mounting such thin-film loudspeakers to a surface would attenuate their output and dampen the vibrations, while limiting their frequency response tremendously.

However, the ingenious approach of the MIT team has solved the problem in a rather unique way. Their new loudspeaker does not have to vibrate the entire material surface. Rather, they have fabricated tiny domes on a thin layer of piezoelectric material, such that each dome can vibrate independently. Each dome is about 15 µm in height, and they move up and down by only half a micron when vibrating. As each dome forms a single sound-generating unit, it requires thousands of these tiny domes to vibrate together to produce audible sounds. While the basic loudspeaker is only 120-µm thick, it weighs only 2 grams. Only standard processes are necessary to manufacture this loudspeaker at low costs.

Spacer layers surround the domes on the bottom and top of the film. This helps to protect the domes from the mounting surface, and at the same time allows them to freely vibrate. These spacer layers also protect the domes from impact and abrasion during daily handling, thereby enhancing the durability of the loudspeaker.

To make the film loudspeakers, the researchers used a thin sheet of PET or polyethylene terephthalate. This is a standard plastic used for a variety of applications. They used a laser to cut tiny holes in the sheet while laminating its underside with an 8-µm thick film of PVDF or polyvinylidene fluoride. This is a common industrial and commercial coating. Then they applied vacuum and heat to bond the two sheets.

As the PVDF layer is very thin, the pressure difference that the vacuum creates together with the heat causes it to bulge, but it cannot force its way through the PET layer. This makes the tiny domes protrude through the holes. The researchers laminated the free side of the PVDF layer with another layer of PET and this acts like a spacer between the bonding surface and the domes. Regardless of the rigid bonding surface, the film loudspeaker could generate a sound pressure level of 66 dB at 30 cm.

What are Reed Switches?

A modern factory will have several electronic devices working, and most of them will have several sensors. Typically, these sensors connect to the devices using wires. The wires provide the sensor with a supply voltage, a ground connection, and the signal output. The application of power allows the sensor to function properly, whether the sensor is sensing the presence of a ferromagnetic metal nearby, or it is sending out a beam of light as a part of the security system. On the other hand, simple mechanical switches, like reed switches, require only two wires to trigger the sensors. These switches need magnetic fields to activate.

The reed switch was born and patented at the Bell Telephone Laboratories. The basic reed switch looks like a small glass capsule that has two protruding wires. Inside the capsule, the wires connect to two ferromagnetic blades with only a few microns separating them. If a magnet happens to approach the switch, the two blades attract each other, making a connection for electricity to flow through them. This is the NO type of reed switch, and it is a normally open circuit until a magnet approaches it. There is another type of reed switch, the NC type, and it has one blade as a non-ferromagnetic type. This switch is a normally closed type, allowing electric current to flow until a magnet approaches it. The approaching magnet makes the blades pull apart, breaking the contact.

Manufacturers use a variety of metals to construct the contacts. This includes rhodium and tungsten. Some switches also use mercury, but the switch must remain in a proper orientation for switching. The glass envelope typically has an inert atmosphere inside—commonly nitrogen—to seal the contacts at one atmospheric pressure. Sealing with an inert atmosphere ensures the contacts remain isolated,  prevents corrosion, and quenches sparks that might result from current interruption due to contact movement.

Although there are solid state Hall effect sensors for detecting magnetic fields, the reed switch has its own advantages that are necessary for some applications. One of them is the superior electrical isolation that reed switches offer compared to what Hall effect sensors do. Moreover, the electrical resistance introduced is much lower for reed switches. Furthermore, reed switches are comfortable working with a range of voltages, variable loads, and frequencies, as they function simply as a switch to connect or disconnect two wires. On the other hand, Hall switches require supporting circuitry to function, which reed switches do not.

For a mechanical switch, reed switches have incredibly high reliability—they typically function for billions of cycles before failing. Moreover, because of their sealed construction, reed switches can function even in explosive environments, where a single spark could generate disastrous results. Although reed switches are older technology, they are far from obsolete. Reed switches are now available in surface mount technology for mounting on boards with automated pick-and-place machinery.

The functioning of reed switches does not require a permanent magnet to actuate them. Even electromagnets can turn them on. Initially, Bell labs used these switches abundantly in their telephone systems, until they changed over to digital electronics.

What are Solid-State Batteries?

The transport industry is currently undergoing a revolution with EVs or electric vehicles on the roads. EVs require batteries, and many EV manufacturers are now manufacturing their own batteries, targeting low-cost batteries with the most range and the fastest charging speed. While many industries are still using lithium-ion batteries, others are moving towards solid-state batteries. Compared to a few years ago, major breakthroughs are finally bringing solid-state batteries closer to mass production.

Although solid-state batteries have been in existence for some time now, and scientists have been researching them, they have been commercially available only in the last decade or so. Specific advantages of solid-state batteries include lower costs, superior energy density, and faster charging times.

Many companies have been researching solid-state battery technology for years. For instance, Toyota claims to be on the verge of producing solid-state batteries commercially for EVs, and they hold more than 1,000 patents.

Conventionally, a lithium-ion battery has an anode and a cathode, with a polymer separator keeping them apart. A liquid electrolyte floods the entire cell and is the medium through which lithium ions can travel while the battery is charging/discharging.

In a solid lithium-ion battery, a solid electrolyte layer separates the anode and the cathode, allowing lithium ions to travel through it. The anode is of pure lithium, which gives it a higher energy density than that of regular batteries. Theoretically, the energy density from solid lithium-ion batteries is roughly about 6300 watts per hour. Compared to the energy density of gasoline, a solid lithium-ion battery offers an energy density of about 9500 watts per liter.

The major advantage of solid-state batteries is their smaller size and weight. Additionally, they pose no fire hazards. As these batteries are very safe, they do not require as many safeguards to secure them. Their smaller size allows packing them to higher power capacity, and they do not release toxins. Solid-state batteries run 80 percent cooler than regular batteries.

With all the above advantages, using solid-state batteries in electric vehicles offer them greater range, safer operation, faster charging, higher voltages, and longer cycle life. However, solid-state batteries must overcome some disadvantages still.

The first of these obstacles is the dendrite formation. Lithium is a highly corrosive metal, requiring the use of chemically inert solid electrolytes. Over time, dendrite growth increases to the extent of destroying the battery. During charging, these batteries usually grow spike-like structures that can develop and begin to puncture the dividers, causing short-circuits in the battery. Manufacturers are using ceramic separators to overcome the dendrite menace.

Solid-state batteries currently do not perform well at low temperatures. This affects its long-term durability.

So far, the biggest detriment to solid-state batteries has been their exorbitant cost. However, present indications from manufacturers like Toyota suggest they have surmounted the price barrier.

Therefore, at present, the only problem still remaining for solid-state battery commercialization is their low-temperature performance. To be a viable alternative, solid-state batteries must perform in all kinds of variable environments and climates. However, manufacturers are offering assurances that they have overcome this hurdle also. Recharging stations need to be able to handle the faster-charging currents as compared to that of regular lithium-ion batteries.