Category Archives: Newsworthy

Types of HATs suitable for the Raspberry Pi

Among several versions of the low-cost, versatile, single board computer, the credit card sized Raspberry Pi or RBPi as it is commonly called, the latest is the Model B+. Along with many new features, the RBPi Model B+ is designed to make intelligent use of expansion cards. Keeping in view of the appendage called a “hat” that many people place on their heads, the RBPi too has expansion cards known as HATs. These are Hardware Attached on Top, and they work by sitting atop the single board computer.

In reality, the RBPi is a bare-bones computer, where only the most essential peripherals are present on-board. This not only helps to keep the prices down, but also allows the primary user to start work with the SBC without being unnecessarily distracted. The primary objective for the makers of the RBPi was to let school children learn about computer programming. The RBPi achieves this objective excellently by allowing the students to start with the bare minimum requirements. They progress by using different HATs to get additional functionality. The advantage is the RBPi behaves as the revolutionary fundamental building block on which widely differing concepts can be easily proven.

Any sort of physical computing with the RBPi generally necessitates setting up extra hardware. Instead of soldering the components directly to the GPIO pins, it is prudent to add the necessary hardware in the form of an expansion card or a HAT, which you simply plug in. To use the HAT, the user has to modify the software suitably, mainly by installing the required drivers and configuring them.

The original models of the RBPi, the A and B, are really not conducive for expansion boards. The 26-pin ribbon cable connector provided on-board offer only the GPIO pins. However, several companies have made expansion boards suitable for direct plug-in to the connector, and they sit on the RBPi, making an electronic sandwich.

With introduction of the RBPi Model B+, the most noticeable change was the transformation of the GPIO connector to a 40-pin PCB header. The first 26 pins of the new header have remained identical to those on the models A and B – maintaining backwards compatibility. That allows HATs developed for the older models to be also used on the RBPi Model B+. The Model B+ has two new pins, ID_SD and ID_SC to allow connecting a serial EEPROM. That allows proper identification of the HAT and RBPi can load the necessary drivers for it. Therefore, as long as the manufacturer designs the HAT or the expansion board correctly, RBPi can configure it automatically.

The Raspberry Pi Foundation has issued specifications that all boards should follow for compatibility with the new model. According to these specifications, an expansion board can be called a HAT only if the board supports the two new pins and has an EEPROM for identification. This identification must include information about the vendor, the GPIO map and the device tree. The board must also conform to the mechanical dimensions specified and not overload the power supply of the RBPi. However, HATs need only meet the minimum specifications, which leave plenty of scope for innovation and stacking.

The Astro Pi in Space

For experiments to run in space, an Astro Pi board fitted with sensors and gadgets is a great way to begin. For this, school pupils in UK are being challenged to write apps for the tiny, inexpensive, single board computer, the Raspberry Pi or the RBPi. As Tim Peake readies for his rendezvous with the International Space Station in November 2015, the British Astronaut will carry with him two RBPis, fortified with Astro Pis. He will have six months to complete the experiments in space.

Analyzing the Astro Pi reveals it to be a HAT or Hardware Attached on Top for the RBPi. It is well packed with several goodies such as – sensors for magnetometer, accelerometer, gyroscope, temperature, barometric pressure, humidity, a real time clock with battery backup, several push-buttons and a versatile 8×8 RGB LED display. In addition, there is also a camera module and an infra-red camera on board the Astro Pi.

With all this gear, Astro Pi is most suitably equipped to carry out real-time science and innovative experiments in space. School children resident in the UK are being encouraged to join in the competition for setting up experiments that astronauts will conduct in space later this year.

The Raspberry Pi Foundation, along with the UK Space and the European Space Agency are organizing the contest. For this, they have devised five themes for stimulating the kids’ creativity and scientific thinking. These include Satellite Imaging, Data Fusion, Space Measurements, Space Radiation and Spacecraft Sensors.

Kids of ages under 11 in the primary school will devise and describe original ideas for application or experimenting on the Astro Pi. Teams presenting the two best submissions will be able to work with the Astro Pi team for interpreting their ideas. The team at the Raspberry Pi Foundation will code these two ideas and get them ready for flight on the ISS.

The competition in the secondary schools will run across three age categories of 11-13, 14-16 and 16+. A selection of the best 50 submissions will be made for each age category and they will win an RBPi and an Astro Pi on which they can code their original concept. From each age category, two winning teams will be selected.

During his six-month space stint, Tim Peake will be deploying the Astro Pis, uploading the winning experiment code, set them running, collect the generated data and download it to be distributed to the winning teams.

Astro Pi is also great for fun sciences. This is possible because of its Sense HAT, incorporating all the sensors on the single board. For example, with the on-board sensors, one can make a self-balancing attack robot that can also sense humans. In reality, most equipment for experimentation in schools is too expensive – the Astro Pi and RBPi combination changes that dimension.

Apart from the huge scope for fun sciences, useful data is expected to be gathered from using the Astro Pi sensors while on the International Space Station. Young people will have a unique chance to learn core computing skills and this will be extremely useful to them in the future.

Silver Nanowire Conductors Improve Touchscreen Products

The next generation of flexible wearable devices is getting help from an unexpected quarter – the silver nanowire, which is proving to be cost-effective for producing touchscreen products.

As wearables grow in popularity, designers struggle with offering flexible products. So far, notebooks and tablets needed to have tough, flat surfaces that were able to survive frequent wear and tear. Although designers have been largely successful in mastering this technology, wearable products pose a different challenge. Humans attaching wearables to their bodies want flexible products that can follow the curvature of their body part. Touch-enabled products are taking a leap forward with the use of materials such as silver nano-wires.

Apart from the mind-boggling reduction in electronic devices, wearability is the next best thing already happening in personal computing devices. That also means an evolution in the human interface. Therefore, people prefer flexibility, not only for the display glass and the electronics, but for the interface as well. In turn, this is leading to virtually unlimited design flexibility along with durability and portability.

With flexible touch comes flexible ergonomics. For example, phone screens are now unbreakable – when dropped, they flex rather than shatter. Therefore, it is now possible to roll up a seven-inch tablet and carry it in the pocket. A display could easily wrap around the arm or a huge public display could wrap around a pillar or a building, just as easily as a neon light can.

The clunky boxes that passed for consumer electronic devices are no longer in vogue. Today, consumers prefer ever-thinner laptops and tablets. Even kiosks and monitors therein are now sleeker and aesthetically more pleasing. This is leading to a greater demand for thinner and lighter components. Additionally, electronic components with lower mass are more durable and rugged.

Apart from being thin, light, visible in different ambient light conditions, highly responsive, touchscreens also need to be brighter, stronger, more sensitive, consume lower power and most importantly, be lower in cost. Since most touchscreens are of the capacitive type, they typically have a see-through conductor as a screen. This very thin layer of material has to conduct electricity while remaining lucid. The transparency allows light from the display underneath to shine through the screen. At present, Indium Tin Oxide or ITO is the legacy material used for the conducting screen, but this has limited flexibility, transparency and conductivity, when compared to silver nano-wires.

Touch interfaces made of silver nanowires are showing great promise on all accounts. This material will help to make forthcoming generations of touch interfaces more responsive, whether they are small or large. They will also be brighter and be visible in all ambient lighting. All this requires more transparency, higher transmission ability and higher conductivity – things that silver nano-wires can easily deliver.

Applications for transparent conductors are not limited to LCDs alone. They are required for OLEDs, shutters for 3D TVs, thin-film photovoltaic cells and future products that the world can only imagine for now. With better light transmission, higher conductivity and no side effects such as pattern or moire-fringe visibility, silver nano-wires are set to introduce all these and more at a lower cost than the traditional technologies presently can.

Free Your Smart Phone and Let it Fly

You may not feel very enthusiastic about Lily, the flying camera-drone that follows you around, but a PhoneDrone is bound to change your point of view. Using your smartphone as its brains, the PhoneDrone lends it wings and allows it to fly along a predetermined path.

This is a perfectly logical situation as a smartphone already contains the necessary sensory and computing power that a drone needs. Most smartphones run on a powerful multicore processor along with several sensors on-board, so why pay for all these things over again when buying a drone. The people at PhoneDrone were also led by the same reasoning and the result is a drone that utilizes its owner’s smartphone for its brains. Users have to dock their phone into the device for each use. Not only does this approach help to keep the price down, it also makes the user exercise caution not to crash the thing.

The Indiana-based company, xCraft, has designed the PhoneDrone, which can accommodate not only iPhones 4s and above, but also the most popular Android phones as well. This same company had earlier produced the fixed-wing/hovering X PlusOne drone. Users can fly the latest PhoneDrone, a quadcopter, in a few different fashions.

By using another mobile device, users can control their flying mobile through Wi-Fi and at the same time, watch live streaming video from the camera on the PhoneDrone. A free app allows users to enter a flight path for the PhoneDrone to follow autonomously. When transporting the device, the propeller arms of the PhoneDrone will fold back.

The user can also impose a follow-me mode with the second mobile device, if required. The phone in the aircraft locks on to the signal of the hand-held device and will automatically pilot the drone to position it above the hand-held device as it moves. A folding mirror on the drone allows the camera of the phone to shoot straight ahead, down or anywhere in between. The battery in the drone gives a flight time of 20-25 minutes. According to xCraft, they are working on an ultrasonic type of collision-avoidance system.

At present, xCraft is raising product funds via Kickstarter for their PhoneDrone project. You can pledge US$199 for the product, which will be yours as soon as xCraft is ready to go.

Others have also tried their hands at making drones with brains based on smartphones. Notable among them are the University of Pennsylvania and the Vienna University of Technology. However, their attempts were mostly one-off. Qualcomm and UPenn have also combined the drone and phone earlier. They had used the electronics of the Android smartphone and its software to fly the drone. All the sensors required for providing navigational information for the drone are already present on the smartphone – accelerometer, GPS, gyroscope and others.

The present trend is to utilize the camera on the phone itself and use its visual input to steer the phone. The user has to install an app on the phone to achieve this. In future, expect more hobbyists to substitute smartphones for hardware at the heart of several other types of machinery such as drones.

A drone camera to follow you around

Unlike Mary, most of us are fortunate or unfortunate enough not to have a little lamb following us around. However, that does not mean we cannot have a camera drone following us wherever we go. A California-based startup firm has pioneered an easy-to-use, self-flying drone as the world’s unique throw-and-shoot camera that flies itself.

To use the device, you simply throw it into air. Lily, the drone camera, immediately deploys its four propellers to provide thrust and directional vectoring. No controller is required as Lily automatically follows its owner. You are free to continue to focus on your activity as Lily captures your adventures, flying itself while grabbing high definition images and video. It is impossible for you to outrun Lily, because it can fly at speeds of up to 25 mph. Therefore, you can employ Lily to film you while snowboarding, kayaking or cycling.

The camera inside Lily is specially engineered to withstand robust handling in tough aerial as well as water environments. Anyone who wants to share their everyday activities can use Lily as a simple, fun way to record their outdoor action sports. Lily can track its owner intelligently, following his or her every move by using GPS and advanced computing algorithms. Lily can provide additional creative shooting opportunities for those wanting to move beyond the single point-of-view of handheld and action cameras.

What makes Lily follow you around and not wander off with some stranger? Well, Lily comes with a tracking device that the owner has to wear on his or her wrist. In reality, Lily is wirelessly tethered to this tracking device, while recognizing the owner using computer vision to follow your features optically. Over time, the tracking accuracy improves as Lily learns on-the-job. With Lily, you can get exciting close-range photos as well as wide, cinematic shots just as professional filmmakers can.

Lily captures still shots at 12MP resolution, slow motion at 720p at 120fps and HD video at 1080p at 60fps. The tracking device uses a built-in microphone for recording high-quality sound, which Lily automatically synchronizes with the video being recorded. Lily has a companion app to which it streams low-resolution live video. This helps the user to frame the shots.

Lily works best in outdoor conditions at a height of 10-30ft. A proprietary computer vision algorithm drives the core technology of Lily’s camera. Although Lily works comfortably in winds exceeding 20mph, the manufacturer advices its use in winds below 15mph, to be safe.

Lily complies with FAA guidelines, while communicating with the tracking device worn by its owner. It relays speed, distance and position back to the built-in camera. The user can direct Lily via either the tracking device or the mobile app. According to the program used, Lily can follow, hover, loop, zoom and do more at an average flying speed of 15 mph. Depending on the way Lily’s owner uses it, a full charge allows Lily to operate between 18 and 22 minutes.

It takes two full hours to charge up fully. As the battery runs low, the tracking device warns you with vibrations. You can summon Lily to make it land on your palm gracefully.

What are Counterfeit SD Cards?

Many of us use SD or Secure Digital memory cards, but seldom do we check if the total capacity actually matches that specified on the card. According to the Counterfeit Report, several dishonest sellers on Alibaba, Amazon, eBay and other reputed sites offer deep discounts for high capacity cards. They use common serial numbers with cards and packaging nearly identical to the authentic products from all major SD card brands.

According to tests conducted by the Counterfeit Report, although the cards work, buyers usually purchase a card based on the specifications printed on it. What they think and buy as a 32GB SD card, may turn out to be a counterfeit with a capacity of only 7GB. Counterfeiters usually overwrite the real memory capacity, imprinting a false capacity figure to match any model and capacity they prefer. Usually, the actual memory capacity cannot be determined by simply plugging the card into a computer, phone or camera. Only when the phony card reaches its limit, it starts to overwrite files, leading to lost data.

According the Craig Crosby, publisher of the Counterfeit Report, such fake cards also come in capacities that do not exist in any product line and counterfeiters target mostly cards above 32GB. They make a great profit on selling fake cards, with practically no consequence.

Usually, people cannot make out counterfeit cards from real ones, until these stop working. Usually, the blame falls on the manufacturer for making faulty products. This may happen even if you buy from a major retailer, as counterfeiters buy genuine items, only to exchange them unopened with their fakes.

Although software packages are available to test whether the card capacity matches the specifications on its packaging, organizations find it time-consuming, especially if they have bought cards in bulk. Additionally, the problem is not with SD cards alone, counterfeiters make fake portable flash drives including USB sticks as well.

Although the SD Association does make standards and specifications for SD cards to promote their adoption, advancement and use, they do not monitor the trade of products such as SD memory cards. The responsibility of counterfeit SD cards falls in the realm of law enforcement.

Manufacturers of SD memory card products can contract with several SD standards-related organizations for different intellectual property related to SD standards. Additionally, SDA member companies can resort to compliance and testing tools for confirming their products meet the standards and specifications, providing assurance to users about interoperability with other products of similar nature.

Consumers, especially bulk purchasers, should be careful to buy from authorized resellers, distributors and sellers. The best resource for any enquiry is the manufacturer of the SD memory card product.

This malaise is not restricted to counterfeit SD cards alone. It is a part of a larger problem. According to the Counterfeit Report, several other items face the same situation. Phony items exist for iPhones, other smartphones, airbags and many other peripherals such as chargers. It is very difficult for consumers to make out the counterfeits and many are even unaware of the existence of such phony high-end items.

How do Piezomotors Work?

Voltage applied to a piezoelectric material causes it to change its shape very minutely. Piezomotors such as Piezo LEGS are ceramic actuators that have four legs as its motors. These are designed cleverly such that the applied voltage can either elongate the legs or bend them sideways. It is also possible to synchronize the movement of each pair of its four legs such that it begins to walk just as an animal would – step by step. While walking, the legs can also stop at any instance on a nanometer level. The driving rod produces direct friction coupling with the legs. That means piezomotors can operate without any mechanical play or backlash. The direct drive, apart from providing full force, also offers power-off locking that does not require any power consumption.

However, the friction coupling between the drive rod and the internal piezo actuator legs does not allow counting the steps or knowing the position of the legs accurately. When they are under constant load, the legs face a certain vibration between the steps. As the load or temperature varies, so do the vibrations. Therefore, separate position sensors are required to know the accurate position of the legs of a piezomotor.

Piezomotors can move extremely slowly. When running in a closed loop system, you can make them achieve a continuous smooth motion at speeds under 1µm/s or 0.001mm/s. Since the speed of a motor depends on its step length and step frequency, a typical linear piezomotor is limited to a maximum speed of 10-15mm/s. In reality, the speed depends on both the external loads and temperature. Therefore, to run the motor at constant speed, you must have a closed loop controller.

Compared to conventional motors, piezomotors are very energy efficient. For example, when in a hold position, piezomotors do not consume any power. They also do not draw peak currents while starting or stopping. Power consumption of such motors is not dependent on inertia. That means the motor will consume the same amount of power under different external torque/load. When operated with a low duty cycle and for point-to-point applications, piezomotors provide excellent battery life.

Just as in regular stepper motors, one can define holding force and stalling force for piezomotors as well. While running, the highest load that the piezomotor can hold dynamically without slipping is called its stalling force. When powered down, the motor is able to hold a load statically and the maximum load that it can statically hold without slipping back is called its holding force. In general, the holding force of a piezomotor is about ten percent higher than its stalling force.

Although the operating principle of a piezomotor is very similar to walking, it can walk with full steps, reduced steps and it can even do micro stepping. Usually, the drive rod or disc will engage with the two or more actuator legs to move them forward and release. Then it will engage with a second set of legs to move them forward. This cycle repeats as long as the motor walks. Therefore, it is always possible to divide the full step into several smaller steps – also called micro stepping.

SSD, Magnetic or Hybrid Drives

Earlier, when we did not have much of a choice, PC storage options were limited to the largest capacity hard disk drive one could afford. Those days are long gone and today the average customer has to juggle between selecting different types of storage media apart from their capacity. Although it is fairly important to select the most optimum storage medium for a specific application, each of the drive types has their own advantages and disadvantages.

Magnetic hard disk drives have long been the default storage component for both desktop and laptop computers. Although the latest magnetic drives are very much advanced and better performing compared to their brethren from yesteryears, their underlying technology has remained mostly unchanged. Magnetic hard drives essentially consist of stiff magnetic platters rotating at high speeds paired with read/write heads travelling over their surface to retrieve or record data.

Magnetic hard disk drive technology is mature. Manufacturers now make highly reliable drives that users can purchase at much lower prices as compared with other storage options – most magnetic hard drives cost only a few cents per gigabyte. Moreover, they are available in relatively high capacities, going up to 4TB. Modern magnetic hard drives connect via the SATA or Serial ATA interface and do not require any special software for the operating system to recognize them. In short, magnetic hard disk drives are dirt-cheap, simple to operate and spacious.

However, the disadvantage with magnetic hard disk drives is their low storage or retrieval speeds compared to the SSDs and Hybrid products. The read and write speed depends on how fast the platter rotates – a 7200-RPM drive is faster than a 5400-RPM drive, but both are significantly slower than SSDs or even hybrid drives.

If you are just an average PC user sticking mostly to using mail, browsing the Web, and some amount of document editing, a standard magnetic hard disk drive should serve you fine.

SSDs or Solid State Drives are so called because unlike the magnetic drives, they do not have any moving parts – they are typically nonvolatile NAND flash memory. Although most SSDs connect via the SATA interface, there are PCI Express-based SSDs that offer ultrahigh-performances. SSDs store data and file just as any other drive does.

Since SSDs do not have any moving parts, they can operate at blazing speeds such as 500MB per second on average accessing data in just a few milliseconds. Compare this with the speed of a magnetic hard disk – 200MBps with access times just a shade below 8ms. In short, with SSDs you have a much snappier and a much more responsive system. With SSDs, everything is faster – boot times, application launch times and file-transfer speeds.

Without moving parts, SSDs are not susceptible to damage or degradation due to movement or vibrations. The two disadvantages with SSDs are their cost per gigabyte and their read/write life. At present, they cost about $1 per gigabyte.

Manufacturers offer Hybrid drives as a go-between. These are mostly magnetic hard drives with some SSD thrown in. The most frequently accessed data is stored in the SSD. That makes for high speed while the cost is kept low.

Can a Solar Cell Store Its Own Power?

Can a Solar Cell Store Its Own Power?

Researchers at Ohio State University have invented a device that looks like a solar cell but has the ability to store the power it generates. The patent-pending device is the world’s first solar battery. On October 3, 2014, the researchers reported in the journal – Nature Communication – that they have succeeded in combining a solar cell and a battery into a single hybrid device.

The innovation is a special solar panel in the form of a mesh that allows entry of air into the battery. Another unique process allows electrons to be transferred between the solar panel and the electrodes of the battery. Light and oxygen entering the device enable chemical reactions to charge the battery.

According to Yiying Wu, Professor of chemistry and biochemistry at the Ohio State University, they will license the new solar battery to industry. Wu expects that the solar battery will tame the costs of renewable energy.

A solar panel is typically used to capture light for converting it to electricity, which is then stored in a cheap battery for later use. By integrating the two functions into a single device, installation becomes simpler and costs go down. The new solar battery may typically bring down the costs by about 25 percent.

The invention also has another advantage. The long interconnections between solar panels and its battery introduce ohmic resistance that reduces the solar energy efficiency because of heat generation when charging. Typically, about 20 percent of the electricity generated by the solar cells is wasted as heat when charging the battery. With the new design, nearly all the electricity generated reaches the battery.

Wu and his students have also developed a high-efficiency battery for use with their solar cells. An earlier designed battery, invented by Wu and his research team, won them the 2014 clean energy prize of $100,000 from the US Department of Energy. The researchers have created a technology spinoff – KAir Energy Systems, LLC – to develop the battery.

The high-efficiency battery is air-powered, meaning it breathes in air when discharging and breathes out when charging. The battery discharges by the chemical reaction of potassium and oxygen. The researchers faced a formidable challenge when trying to combine a solar panel with the KAir type of battery. Typical solar cells are solid panels of semiconductor material and this would prevent air from entering the battery.

Wu and his research team had to redesign the solar panel to make it permeable. They did this by using titanium gauze, a flexible fabric. They grew vertical rods of titanium dioxide on the fabric, similar to blades of grass growing on soil. The rods capture sunlight, while air passes freely through them and the gauze.

Normally, interconnecting a solar cell and a battery requires four electrodes – two on the solar panel and two on the battery. The hybrid design of the researchers has reduced the number of electrodes required to three.

The mesh in the solar panel forms the first electrode. Under this, a thin sheet of porous carbon forms the second electrode, while a lithium plate forms the third. Layers of electrolyte sandwiched between the electrodes forms the battery to store electricity.

New Method for Recycling PCB Waste

All over the world, gadgets contain Printed Circuit Boards or PCBs as a means of mounting and interconnecting the several electronic components they use. When the life of the gadget comes to an end, nearly all components are recycled. Although the recycling process is streamlined in some countries, it is still a growing industry in most developing countries. It is especially difficult to recycle the PCB and its components, since it often produced significant waste streams. Researchers in China have developed an innovative method to salvage the materials found in waste PCBs.

Every year, e-waste produced around the globe reaches nearly 50-million tons, most of which ends up in the developing countries such as China and India. Now, there is a friendly method for salvaging materials from waste PCBs. Using the solvent Dimethyl Sulfoxide or DMSO, Chinese researchers claim to have developed an environmentally friendly method that can simplify the process of recycling e-waste, especially waste PCBs.

Traditional methods of recovering precious metals from waste PCBs include using pyrolysis along with hydrometallurgical processes. The process uses aqueous solvents such as strong alkalis and acids. However, these processes are not environmentally friendly. They contaminate the environment with toxic heavy metals including persistent organic pollutants. They also generate a huge quantity of spend acids and alkalis that is difficult or impossible to recover.

At the Zhejiang Gongshang University in Hangzhou, researchers Ping Zhu and colleagues have developed a simple process of separation. They claim this process can recover valuable materials from waste PCBs at much lower recycling costs. At the same time, their method does not create the environmental pollution that other methods do.

Traditional methods decompose the polymer resins of waste PCBs to separate them. This process generates polybrominated dibenzofurans and deibenzodioxins, which are highly toxic. The new method is simple and easy as it swells the polymer resins, but does not allow it to decompose into the solution. Therefore, the process does not cause secondary pollution and the solvent can be reused.

According to the team, the process begins with stripping the waste PCBs of all electronic components. Next, the bare boards are shredded into fragments of approximately 1-3cm2. Then, the fragments are heated with DMSO – under an atmosphere of nitrogen. As the DMSO swells the brominated epoxy resin that holds the PCB layers together, they separate from one another. After abstracting and filtering the solution, it is evaporated under vacuum to regenerate the used DMSO. That leaves behind the separated polymer resin and the circuit board components.

At present, the size of the PCB fragments can be an issue in scaling the process up to industrial scales. At Ecyclex, an e-waste management company in the UAE, Saeed Nusri, a chemical engineer feels that this process could be remarkable. In his opinion, the process can solve many issues related to process complexity and solvent recovery that are typically faced in hydrometallurgical recycling of PCBs. Since only 2% of DMSO is lost in every run, there is a lot of savings in raw materials.