Category Archives: Newsworthy

Colorful Images from Electron Microscopy

Almost everyone treats Christmas as the time to get away from regular work. Surprisingly, there are exceptions, such as Roger Tsien. This late biochemist would do an extra two weeks of uninterrupted research in his lab during Christmas. In one of his sojourns, he gifted the world the first electron micrographs—in color. His method used to create them will dramatically advance cell imaging.

Scientists use Electron Microscopy (EM) for magnifying objects up to 10 million times their original size. The technique makes use of accelerated electrons for the purpose. Conventional EM images are in gray scale, and scientists add color using computer graphics programs, once the images are recorded. Tsien and his colleagues modified the EM technique for directly incorporating color labeling into the images.

Along with co-workers Mark H. Ellisman and Stephen Adams, Tsien devised techniques for employing serial applications of various lanthanides or rare earth metals, which served as the labels. Along with this, the researchers used the EELS or electron energy-loss spectroscopy type of Ems. EELS is capable of differentiating among the lanthanides. It does this by measuring the differences in energy deflected or absorbed by each lanthanide from an electron beam.

For instance, for creating the color image of a cell organelle such as an endosome, the researchers had to stain the sample initially with a lanthanide called cerium. This made the sample appear green when viewed under EELS. After removing the excess cerium, they applied the element praseodymium. This targeted another protein within the sample, which EELS now registered as red. Now all that the scientists had to do was to overlay the green and red images onto a traditional gray scale EM image and create the composite image. The final image highlighted different distinct regions of the endosome with red and green color.

In the November issue of the publication Cell Chemical Biology, Tsien, along with his coauthors, has described their multicolor EM technique. Although the technique is still very new, scientists are using it to obtain new information about cell structure. For instance, regular light microscopy is incapable of showing protein movements with and between cells. With the new technique, scientists can now view cell components at a much higher level of detail.

For instance, until now, scientists had only a hypothesis about the fate of certain molecules since they are too small to be visible using light microscopes. EELS offered vibrant proof and confirmed the hypothesis. So far, scientists had only conjectured that certain CPPs or cell penetrating peptides were responsible for ferrying molecules as cargo into cells, and that the cells then took up these molecules into the interior of endosomes. With the praseodymium coloring one kind of CPP with a red label, scientists were able to verify their hypothesis, as the CPP visibly ended up inside the endosome. At the same time, another molecule, colored vivid green with cerium, ended up predictably at the endosomal surface.

Tsien’s death has deprived the world of further contributions to this transformative technique. However, the innovations will continue to inspire his co-workers and the newer generation of scientists. Tsien, as a fitting last gift to the scientific world, added color to electron microscopy to allow them to see more within cells.

The Energy Efficient RRAMs

Engineers at Stanford are making 3-D memory chips that can offer faster and more energy efficient solutions for computer memory. These are the Resistive random Access Memory or RRAMs, which are based on a new semiconductor material. It stores data based on temperature and voltage. However, the actual workings of RRAMs continued to be a mystery until a team at Stanford used a new tool for their investigations. They found the optimal temperature range to be lower than they had expected. This could lead to memory that is more efficient.

Conventional computer chips operate on a two dimensional plane. Typically, the CPU and memory communicate with each other through the data bus. While both the CPU and memory components have advanced technically, the data bus has lagged, leading to a slowdown of the entire system when crunching large amounts of data.

The special semiconductor RRAMs can be stacked one on top of the other, creating a 3-D structure. This brings the memory and its logic components closer together. As conventional silicon devices cannot replicate this, the 3-D high-rise chips can work at much higher speeds and be more energy efficient. Not only is this a better solution for tacking the challenges of Big Data, it can also extend the battery life of mobile devices.

The RRAMs work more like a switch. As explained by the Stanford engineers, in their natural state, the RRAM materials behave just as insulators do—resist the flow of electrons. However, when zapped with an electric field, a filament-like path opens up in the material, and electrons can flow through it. A second jolt closes the filament, and the material returns to being the insulator it was. Alternating between the two states generates a binary code with no signal transfer representing a zero and the passage of electrons representing a one.

The temperature rise of the material when subjected to the electric field causes the filament to form, allowing electrons to pass through. So far, the engineers were unable to estimate the exact temperature of the material that caused the switch. They needed much more precise information about the fundamental behavior of the RRAM material before they could hope to produce reliable devices.

As the engineers had no way of measuring the heat produced by a jolt of electricity, they heated the RRAM chips using a hot plate, while not applying any voltage. They then monitored the flow of electrons as filaments began to form. This allowed the team to measure the exact temperature band necessary for the materials to form the filaments. The engineers found the filaments formed between 26.7 and 126.7°C. Therefore, future RRAM devices will require less electricity for generating these temperatures, and that would make them more energy efficient.

Although at this moment, RRAMs are not yet ready to be incorporated into consumer devices, the researchers are confident that the discovery of the temperature range will speed up development work.

According to Ziwen Wang, a member of the team, the voltage and temperature discovered can be the predictive design inputs for enabling the design of a better memory device. The researchers will be presenting their find at the IEEE International Electron Devices Meeting in San Francisco.

Why not wear Digital Clothes?

We carry so much digital technology on our person all the time; it is quite natural to wonder about digital clothes. Technologists and manufacturers assure us that the field of printed electronics to produce digital clothes will be making significant advances in 2017. We have some indications as to what is to be expected.

For instance, there is the safety garment that Flex and MAS Holdings is planning on producing. The garment has LEDs embedded into the fabric. As of now, the manufacturers are working to identify the gaps in making fabrics and electronics work together. This includes materials, connectors, encapsulation techniques, antennas, and batteries (as power sources).

At another event exhibiting printed electronics, several manufacturers of medical and e-wear exhibited useful conductive yarns able to survive more than 100 wash cycles. However, manufacturers are facing a lack of benchmarks and standards for these yarns.

Project Jacquard, started by Google in early 2014 with a small team, has an aim to use smart fabrics for creating devices to recognize gestures. Google’s plan is to use standard, industrial looms to create fabrics with touch and gesture interactivity woven into the textile.

Along with conductive fabrics, there is also the need for flexible components such as batteries and substrates. At present, digital wearables need these to replace the rigid printed circuit boards that constitute them. Although there had been considerable talk of printed, flexible sensors in the annual Sensor Expo earlier, advances have been rather slow on these fronts.

For rapid prototyping, inkjet printers with conductive inks can allow creation of circuits printed within objects, including playing structural roles if necessary. Startup Nano Dimensions has demonstrated such a printer that prints circuit boards on plastic using conductive inks.

Very soon on the market, you can expect printable, solid-state batteries that can be formed. STMicroelectronics is already making these in a plant in Tours, France. However, at present, these have very low energy density, of the order of 20 mAh.

The US Department of Defense, along with a group of companies, universities, and research centers have funded the NextFlex center. According to Malcolm Thompson, executive director of NextFlex, the field of flexible, printed electronics is still in an embryonic state and flexible. Although some companies are manufacturing these devices and processes, there is no single large-scale manufacturing anywhere. Thompson expects things to change very soon.

For instance, NextFlex has a program to develop EDA tools for using conductive inks to print transistors and other discrete components on plastic. For this, they are partnering with Ansys and Hewlett Packard Enterprises. According to Jason Marsh, director of technology for NextFlex, although the printed transistors, diodes, and resistors at present are not substantial, the process is critical for reaching the NFC tag of below one cent—the ultimate target for printed electronics.

Over the last decade, along with the US, several regional and national centers in Europe have also invested substantial amounts in flexible, printed electronics.

China is also setting up its own research facility. According to analyst Raghu Das, the Chinese government is funding for equipment to the amount of $50 million for the facility.

The Next Generation Wireless Audio

We have been seeing wirelessly connected speakers for quite some time now, mainly using the Bluetooth technology. Although convenient, Bluetooth technology has its limitations because of bandwidth and range. The first to overcome this was Sonos who introduced Wi-Fi based wireless speaker system with their SonosNet mesh-networking technology. Several others followed, such as DTS’s Play-Fi, DLNA or Digital Living Network Alliance, and Apple AirPlay among the leading few. The most recent is the Google Cast protocols to allow sending audio over Wi-Fi in different ways. However, the lack of standardization gives consumers several choices.

Next few years will see key players taking the center stage in wireless audio. Among these will be Sony, Harman, Bose, Sonos, Google, and Amazon, among a few others. Amazon has already made its mark with the highly successful Amazon Echo, a voice-enabled speaker and virtual assistant. It is rivaled by the Google Home device, which works like a smart-home control center and a virtual assistance as well. By pivoting round the voice-enabled interactive products, the market is offering users a choice of looking away from the phone screens for some time of the day.

The key challenge for voice-enabled systems will be the design of the microphone-array, as these will be crucial to allow the device to accurately interpret the users voices both in the near- as well as far-field scenarios. Amazon’s product has an excellent voice-listening capability.

On the other end of the spectrum of products are the wireless headsets, headphones, and earbuds. Although most use Bluetooth and BLE or Bluetooth Low Energy, some will be using Wi-Fi in the near future. For instance, Apple has introduced its wireless AirPods. Therefore, such wireless hearables will be coming up strongly. These products will be governed by the requirements of super-low current consumption and long battery life.

For OEMs introducing multi-channel and multi-room audio systems such as 5.1, 7.1 and others, the key challenge will be delivering an audio stream synchronized to all the devices on the network. Systems will need time-stamped algorithms for all packets entering or leaving for ensuring perfect synchronizing of the audio output to the speakers. Different nodes on the network will have varying latency, and the OEMs will need to address these, to keep the system in synch for both over the air as well as through the system channels.

There is extensive fragmentation among Bluetooth audio standards. For instance, there are Miracast, DLNA, DTS Play-Fi, SonosNet, Spotify Connect, Google Cast, Apple’s AirPlay, A2DP, and others. All have their own differentiating features, with business leaders pushing their own ecosystems for their business and technological reasons. However, these remain popular as they cater to different segments of users.

Although Bluetooth is very popular, easy to use, low power, low-cost, and a wide range of devices has the technology built-in already, it is limited by range and the inability to handle more than one device at a time. AirPlay works only with Apple hardware and software. Google Cast, Play-Fi, and Spotify Connect work with Wi-Fi, and these enable streaming audio over longer distances and to multiple speakers at the same time.

How Do You Count People Using Wi-Fi?

Other than providing wireless communication facilities, Wi-Fi can have other uses as well. Researchers at the UCSB are now experimenting with a common wireless signal to tell them the number of people present in a designated space. Astonishingly, these people need not be carrying any personal devices on them.

At Professor Yasamin Mostofi’s lab in the UC, Santa Barbara, researchers are demonstrating that wireless signals have more uses than simply providing access to the Internet. With a Wi-Fi signal, they are counting the number of people in a given space. According to the researchers, this technology can lead to diverse applications, such as search-and-rescue operations and energy efficiency.

Mostofi explains the process as estimating the number of people walking about in an area, based on the scattering and received power measurements of a Wi-Fi link. Moreover, it is unnecessary for the people being counted to carry any Wi-Fi enabled telecommunications devices.

In the demonstration, the researchers placed two Wi-Fi cards at the opposite sides of a target area measuring roughly 70-square-meters. They measured the received power of the link between the two cards, and this approach allowed them to estimate the number of people walking about in that area. So far, they have been successful in detecting up to nine people in both outdoor and indoor settings. Mostofi’s research group will be publishing their findings in the special issue on location-awareness for radios and networks in the Selected Areas in Communication of the publication of the Institute of Electrical and Electronics Engineers Journal.

According to Mostofi, the main motivation for this work comes from counting several continuously walking people in a small area by measuring only the power of one link of the Wi-Fi signal.

The researchers count people relying to a large extent on the changes in the received wireless signal. Human bodies scatter wireless signal, and when a person crosses the direct wireless link between the two cards, there is a distinct attenuation of the signal—both effects combining to form multi-path fading. Based on these two key phenomena, and a probabilistic mathematical framework, the researchers have proposed a method of estimating the number of people walking in the space.

With Wi-Fi abounding in most urban settings, the researchers estimate a huge potential for their findings for many diverse applications. For instance, smart homes and buildings can estimate the heating and air-conditioning requirements based on occupancy or the number of people present in a given space at the time. Stores can go for better business planning based on the number of shoppers on specific days of the week.

Occupancy estimation could also help in security and rescue operations. Remote estimation of the number of people stranded at a place can help with the organization and logistics involved in arrangement of the transportation required to rescue them. Mostofi and his team have also done extensive research work in their lab involving estimation of stationary objects and humans through walls using Wi-Fi signals. They ultimately plan to bring the two projects together in the future, so that security and rescue operations can commence with better preparation.

What Active Safety Systems do Cars Use?

As cars move towards independence from drivers, and become more self-reliant, they are also becoming smarter and safer. Manufacturers are using newer systems every year for the assistance of drivers with the systems increasingly employing advanced technology and data processing. Among such advanced technology range from automatic high-bean control to pre-collision braking systems, and these are now becoming the norm in practically all kinds of cars.At present, the active safety systems manufacturers use in cars are mainly in the form of three major sensors – LIDAR, radar, and cameras. While assisting drivers in cars, these sensors offer benefits in different ways. Manufacturers also combine these with other sensors for achieving better solutions.

Light Detection and Ranging – LIDAR

This technology relies on lasers to measure distance. When used for automotive applications, the LIDAR system uses infrared lasers firing hundreds of pulses every second. The system measures the time of flight for the reflected light to return to the sensor. The distance to the object is then half of the time of flight times the speed of light.

LIDAR systems are in use by major car manufacturers, including Toyota, Volvo, Continental, and Infinity. These and other manufacturers often combine LIDAR sensors with other technologies such as radar and cameras to provide additional information. For instance, the MFL system from Continental combines LIDAR with a multifunctional camera that Toyota uses for providing automatic high-beam control, lane departure alert and a pre-collision system.

Radio Detection and Ranging – RADAR

One of the oldest and predominant sensor technologies, radar is used for advanced driver safety systems in automotive applications. These safety systems measure the time of flight, frequency shift, and the amplitude of the return signal for determining the relevant information. Automotive applications use radar systems for monitoring blind spots and provide warning for forward collision.

Similar to the LIDAR sensors, other technologies are used in conjunction with radar to obtain better information. By combining a camera and radar into a single package system, mounted in front of the rearview mirror inside the car, it offers multiple functionality such as traffic sign recognition, headlight control, object detection, pedestrian detection, full autonomous braking, pre-crash collision mitigation, forward collision warning, headway alert, lane departure warning/lane keeping, and full-speed adaptive cruise control.

Daylight and Night Vision Cameras

Driver assistance systems majorly rely on cameras, either on their own or by augmenting other systems using computer vision algorithms. Powerful processors extract valuable data using sophisticated image processing in real time. Some cars contain multiple cameras for providing different forms of data to the driver.

Cameras are also useful in assisting the driver to remain attentive when driving. For instance, the Driver Status Monitor from DENSO uses a system of cameras for detecting the driver’s head position, drowsiness level, long-duration eye closure, and the face angle to determine if the driver is distracted of drowsy. IR LEDs provide illumination for nighttime detection. The system then produces a suitable warning for the driver.

In the Future

A decade ago, such systems would be part of science fiction and even five years earlier, these safety systems were part only of luxury vehicles. However, these are commonplace now. Maybe, within the next five to ten years, self-driving cars will be the norm and people will take these and other safety systems for granted.

Brixo, Toaster & Jet Pack: Crowdfunded Hardware Designs

New Crowdfunded Hardware Designs

If you possess an inventive streak, there are various places from where you can draw inspiration for your next big idea. Hardware designs on sites such as the Crowd Supply, Indiegogo, and Kickstarter can provide a spark to fire up your imagination and trigger a series of thoughts to lead you to your next discovery. Some inexpensive favorites are given below.

Legos on Steroids – Brixo

Brixo presents blocks similar to and compatible with those made by Lego, and the difference may not be apparent at first glance. A closer look reveals that Brixo has chrome plated many of their blocks. The special chrome plating conducts electricity and there are three unique connector blocks that Brixo has designed especially for performing specific functions. The three special blocks are the Connector, Trigger, and Action blocks. While the Connector blocks transmit power to the others, the Trigger blocks contain Bluetooth controller and other sensors such as sound, light, and proximity. The Action blocks have motors and lights within them.

The Starter kit comprises one battery case with BLE, one motor block, 20 4×1 blocks, two 2×2 blocks, 10 2×1 blocks, one light switch, and one LED. They offer other kits of increasing numbers of blocks – Standard kit, Makers’ kit, Expert kit, and The Mad Scientist kit. Brixo also offers a Classroom kit for 40 students.

The battery block with its 9 V internal battery powers your entire assembly. The built-in Bluetooth controller allows controlling actions with Brixo’s mobile application. Therefore, you can set the Action blocks to light up, spin, move, and take action using your smartphone. Brixo’s kits are great for learning about IoT and IFTTT.

Dual Output with Toaster

While testing electronic projects, there is usually a requirement for different supplies. For instance, digital circuits need 5 or 3.3 VDC, while analog circuits may require anything between 5-16 Volts. It is cumbersome having to plug in and operate several power supply units to get all the voltages necessary – hence the Toaster.

The Toaster is a single 50 x 25 mm board, and you can plug it into your breadboard. It powers up with either a single USB cable or a wall charger with 5 Volts. Once powered up, one rail on the breadboard will have a variable voltage that can be preset to anywhere between 3.3 and 5 Volts. The other rail can be preset to any voltage between 5 and 16 Volts. The input is protected with a 1.1 A resettable fuse.

Drive Motors with the Jet Pack

The Jet Pack is a motor shield for Arduino wireless programming. As the name implies, its wireless features eliminate the need to hook up the board physically to a computer for programming. That makes Arduino programming and development much easier and quicker. Bluetooth takes care of the data transfer and wireless programmability.

Depending on how you use it, the Jet Pack allows you to drive one stepper motor or two DC motors simultaneously. The creators of the Jet Pack also offer a Rover kit that makes the Jet Pack more robotics-friendly. With the Rover kit, you get all the parts necessary to build a basic remote controlled rover.

New Velocity & RBPi: Charting an undiscovered island

Not many engineers are familiar with cartography, the map-making process. However, with advances in technology, map-making also uses computers, including using them for gathering, evaluation, and processing the source data. Furthermore, cartographers use the computer for intellectual and graphical design of the map, down to the drawing and reproduction of the final document.

There is more to cartography than mere map-making. Being an academic discipline in its own right, there exist professional associations – regional, national, and international – educational programs, conferences, journals, and other identities related exclusively to cartography. Although technological change has always affected the way cartographers prepare their maps, the computer helps them gain unparalleled control over the mapping process.

New Velocity, a machine based on the single board computer, the Raspberry Pi or RBPi, helps in the charting process. Luiz Zanotello created New Velocity at the University of the Arts at Bremen. This project has been especially helpful in investigating a certain charting error as yet persisting in cartographic maps. It involves the entanglement of physical phenomenon and data, to both of which the digital media gives the same weight.

This anomaly existed for over a century in the form of Sandy Island, located near the French territory of New Caledonia. Although the island appeared on several maps from as early as the late 19th century, an Australian surveyor ship, passing through the area, discovered that the island actually did not exist, and never had. This was followed up by removing the map from all maps. Luiz has reproduced the conditions upon which the island was seen in 1876. This project recreates the charting glitch that put the non-existing island in maps worldwide. By manipulating the digital presence, New Velocity generates a new dataset to support the existence of this fictitious island.

New Velocity has a platform to replicate the up/down movement of a ship floating over high seas. On the platform is an infrared proximity sensor for scanning sand piles. The RBPi maps the spacial data from the proximity sensor for visualization in real time. New Velocity has four preset modes, one for each dataset it records. For instance, it records coastline coordinates, digital geo-tagging, topographical elevation, and water depth surroundings.

New Velocity generates evidence of the presence of an islet in each set of datasets within the range of the island. It also uploads the data posteriorly to the open data bank of Sandy Island for spreading.

The project uses an RBPi2 running the Raspbian Jessie and openFrameworks for generating outputs that include visuals and mapping. Two NEMA 17 stepper motors help to achieve the physical motion. An Arduino Uno running the AccelStepper Library software program operates the motors via two DRV8834 Low-Voltage Stepper Motor Driver Carriers. For sensing the sand pile, New Velocity uses the GP2Y0A41sk0F Analog Distance Sensor, made by Sharp and it can measure from four to 30 cm. The entire project is encased in handcrafted wood and acrylic cases with red LEDs and a toggle button.

New Velocity proves that effective mapping is crucial for finding solutions to cartography, many of them being environmental. Without accurate maps, several activities related to the earth’s surface, such as mineral prospecting, forest management, locational analysis, road construction, weather prospecting, and so many more would remain unpractical.

Use the Raspberry Pi for the Internet of Things

Barriers are coming down between operational technologies. Barriers such as were existing between industrial hardware and software for monitoring and controlling machines and the ERP systems and other information technology people typically use when operating and supporting their business. Manufacturers are having an exciting time as new opportunities are emerging every day for improving the productivity. Along with the rise in the challenges, there are innovations in creating new sources of customer value.

Data is not a new thing for manufacturers. In fact, there was enough data with manufacturers long before the Internet of Things and Big Data came into existence. Although manufacturers have been collecting and analyzing machine data for ages, they can now replace their legacy equipment and systems. With the explosion of the Internet of Things, the flow of data on the customers’ side is also ramping up. Networked products are tightening the connection between customers and manufacturers, with service capabilities expanding and creating entirely new revenue models.

With every organization wanting to participate in the Internet of Things, and IT professionals wanting to know how to add IoT skills to their resume, it is time to look at the different options for learning about IoT. Although there are many ways to gather this knowledge, nothing really can beat the hands-on experience.

The tiny single board computer, the Raspberry Pi or RBPi is one of the key learning platforms for IoT. Not only because this involves very low cost, but also because it offers a complete Linux server in its tiny platform. When you use the RBPi for learning about IoT, you will find that the most difficult thing to face is the picking the right project to make a start.
On the Web, you can find several thousand projects based on the RBPi. They involve the ambitious types, silly types, while some are really great for learning about Linux, RBPi, and the intricacies of the IoT.

When starting out with IoT projects and the RBPi, it is prudent to keep to a boundary – use some common sensors and or controller types. Custom-built hardware is fine for geeks, but for those who are just starting out with IoT, going wild with hardware builds can lead you astray.

While selecting a project, choose one that has something interesting going on for the control software. While it would be foolish to start with an epic development project, just to make a meaningful learning experience, simply calling pre-existing scripts and applications is also likely to cause a loss of interest.

Choose a fun project to start with. Of course, you will be training for the IoT. Nevertheless, training in the form of drudgery is no fun. Therefore, select a project that will want to make you move forward and continue your journey with the education.

You can buy individual sensors from the market and hook them up to your RBPi. However, as a beginner, you might be well off buying a kit for a specific use such as a single wire temperature sensor or a humidity sensor. Later, when more confident, you could move on to Hardware Attached on Top or HATs for the RBPi.

Pi-Top: Convert your Raspberry Pi into a Laptop

Although we call the Raspberry Pi or RBPi as a single board computer and it is small enough to fit in your pocket, it is hardly useful as a computer when you are on the move. This is mainly because the SBC comes without a keyboard, display, and mouse, intended to keep the costs down. However, if you are interested in turning your RBPi3 into a laptop, there is the Pi-Top.

You get everything necessary to turn your $35 single board computer into a laptop. For instance, you get a 13.3” HD LCD screen with an eDP interface and 1366×768 pixel resolution, which comes with an active 262K color matrix, anti-glare finish, and a 60 Hz refresh rate TFT LCD module. Additionally, you get a keyboard that is fully programmable via USB and a trackpad with a PalmCheck feature that helps prevent unwanted mouse clicks.

Although the Pi-Top converts the RBPI into a general-purpose laptop, its actual strength lies in its being a tinkerer’s toolkit. Pi-Top gives you great power management with LED battery indicators. The power supply requires an input capable of 18 V at 3 A, while it offers two outputs, one of 5 V, 3.5 A, and the other at 3.3 V, 500 mA. One good feature is the 3.3 V output is persistent. That means this voltage is available even when you have powered off the Pi-Top. Battery capacity is substantial, giving a run-time of 10-12 hours. There is protection for all outputs from over-current, over-voltage, over-temperature, and short-circuit. The smart battery pack uses a charging profile recommended by JEITA.

The hub-board of the Pi-Top has a screen driver that converts the HDMI output from the RBPi to the eDP 1.2 interface required by the LCD screen. It allows connection of UART, I2C, and SPI to the RBPi for use with add-on boards. There is even a PS/2 interface. The screen consumes 3 W, but you can dim it with a PWM screen dim control to make it consume less power.

Pi-Top comes with a manual to walk you through the assembly process in steps, while identifying clearly the part necessary to use at each stage. The manual has a pictorial guide to help in assembling the laptop. That makes the job relatively simpler. Since all the tools you need are already included, piecing together the case, cables, and boards into a working laptop is an unforgettable experience. However, you do need to be careful when tightening the smallish 2.5 mm nuts that hold the boards in place, as there are various electronic components on the boards.

Once assembled, the Pi-Top is an impressive sight, with its fluorescent green finish. The external case is injection-molded plastic and is sturdy enough to be travel-worthy. When powered on, you may be surprised at not seeing the familiar Linux-based Raspbian desktop on the screen. That is because the PI-Top re-skins the Raspbian desktop as the pi-topOS. Basically, they have added a launcher and configured the desktop to add a menu button at the bottom left corner – familiar to long-time Windows users with the Start menu.