Category Archives: Newsworthy

Is there a 64-bit Raspberry Pi?

Although the arrival of the Raspberry Pi 3 (RBPi3) heralded a huge speed boost for the Linux hacker board, this $35, wireless-enabled single board computer did not signal a switch over to 64-bit ARM computing. Even though the hardware, following so many other SBCs at the time, was 64 bits, the default Linux distribution from the Raspberry Pi Foundation is still 32-bit.

Eventually, there will be a changeover to 64-bit ARM firmware, as the technology offers significant improvements in performance. More power-efficient chips, such as the 64-bit x86 are also piling on the pressure. However, the Raspberry Pi Foundation is still not committing itself beyond considering a change in the coming months to the 64-bit for the default Raspbian distribution as the reworking of the code required for the changeover is going to be extensive.

The RBPi3 has advanced to the new quad-core of Cortex A53 BCM2837 SoC from Broadcom. Architecturally, this SoC is quite similar to the BCM2836 that the predecessor RBPi2 uses—the quad-core Cortex A7. The Pi Foundation claims that even while operating in 32-bits, the RBPI3 delivers more than 50% better performance than delivered by the RBPi2. This is because of two improvements, one due to the superior architecture of the Cortex A-53, and the other due to the higher clock rate of 1.2 GHz of the RBPi3, as compared to that of 900 MHz of the RBPi2.

While comparing the RBPi3 with the RBPi2, we find the BCM2837 on the RBPi3 is paired with the same VideoCore IV GPU from Broadcom, similar to that in the RBPi2. However, in the RBPi3, the GPU is clocked at a higher rate of 400 MHz. That precludes any video performance at 4K, deep learning projects, or any high-end VR from the RBPi3. On the other hand, the Odroid-C2, being equipped with a Mali-450 GPU, supports 4K video decoding.

Eben Upton, the CEO for the Foundation’s commercial arm, the Raspberry Pi Trading, has explained this. According to Upton, the VideoCore IV 3D is the only 3-D graphics core for the ARM-based SoCs that has been documented publicly and the Foundation wants to make the RBPi more open over time.

Apart from the new SoC, the RBPi3 has also added a wireless chip from Broadcom, the BCM43438, and this enables it with 2.4 GHz, 802.11n Wi-Fi, and Bluetooth 4.1 BLE. With this addition, the RBPi3 steals a march over the Odroid-C2, which lacks wireless, operates on a Cortex-53 Amlogic S905 SoC, and costs $5 more.

Whether to have wireless onboard, or to let users select their own wireless options via Ethernet or USB adapters, has been the subject of an intense debate. As earlier, cost was the main consideration, and the deciding factor came from the dropping prices of wireless chips. Further, the single antenna of the Broadcom chip can be soldered directly onto the board, rather than be used as a module.

Other than the slight shift in the placement of the LED, the new processor, and the wireless capability, the RBPi3 is identical to its predecessor, the RBPi2. They share the same dimensions, amount of RAM, and the 40-pin expansion connector.

Extending IoT with the Raspberry Pi

Recently, the Raspberry Foundation has updated its embedded Compute Module with a faster ARM processor. This will help developers and businesses build new IoT devices. The new Compute Module 3 (CM3) comes with a powerful new option and embedded compute capabilities for device makers interested in the Internet of Things (IoT).

Although not to be confused with the Single Board Computer, the Raspberry Pi (RBPi), with which the CM3 also shared the latest update, is a tiny form-factor ARM-powered SBC originally developed to help both kids and adults learn computer programming.

Launched with the same form factor as that of the RBPi, the CM3 was specifically targeted at business and industrial users. While the RBPi is a completely standalone device, the CM3, on the other hand, is a module intended for plugging into a separate Printed Circuit Board. The primary aim of the Compute Module is to let vendors and developers develop customized products quickly.

The new CM3, like the RBPi3, also uses the same Broadcom system-on-chip (SoC), the ARM BCM2837. The ARM Cortex A53 design forms the base for the SoC BCM2837, which is a 1.2 GHz, quad-core chip running on 64 bits. As a bonus, the standard CM3 has an on-module eMMC flash memory of 4 GB.

Other than the standard CM3, the Raspberry Pi Foundation also has a CM3L or Compute Module 3 Lite version. With the CM3L, users can wire up their choice of an SD card interface or eMMC memory. While the CM3L also comes with the same BCM2837 SoC, the on-board RAM is still restricted to 1 GB only.

Along with the CM3 and the CM3L, the Raspberry Pi Foundation is also releasing the new Compute Module IO Board V3 (CMIO3). This will provide developers with a starter breakout board to which they can connect their Compute Module.

The CMIO3 offers designers a starting template for designing with the Compute Module, providing them with a quick method to experiment with the hardware and to build and test a system. Once the experiment succeeds, they can proceed with the expense of fabricating a custom board. The CMIO3 also provides the necessary USB and HDMI connectors to make up the entire system that boots up and runs the Raspbian OS, or any other OS you select.

Although the Raspberry Pi Foundation has only recently released new Command Modules, next generation large-format displays based on the modules are already available from the consumer electronics vendor NEC, as they had early access to them.

The idea behind the Compute Modules is to provide a cost-effective and easy route to making customized products using the hardware and software platforms of the RBPi. The modules provided the team in the garage the same technology that the big guys already had. The Module takes care of the complexity of routing the core power supply, the high-speed RAM interface, and the processor pins, while allowing a simple carrier board provide the basics in terms of form factor and external interfaces. The form factor of the module follows that of the inexpensive, easily available, standard DDR2 SODIMM.

Powering the Pacemaker from Solar Energy

Those suffering from certain ailments of the heart, have to have a pacemaker installed. Surgeons place this tiny medical device in the chest or abdomen of the patient and it helps to control abnormal heart rhythms. The device generates electrical pulses and prompts the heart to beat at a normal rate. Power comes from implanted Lithium-iodide or Lithium anode cells, with Titanium as the encasing metal. The downside to this arrangement is the cells need replacement once they are discharged, and that means periodic surgeries.

To avoid repeated surgeries, scientists prefer using solar cells placed under the skin for continuously recharging the implanted electronic medical devices. According to Swiss researchers, a 3.6 square centimeter solar cell generates enough power necessary to keep a typical pacemaker running through the year.

Lukas Bereuter of Bern University Hospital and his team from the University of Bern in Switzerland have presented a study that provides real-life data on the potential of using solar cells to power implanted devices such as deep brain stimulators and pacemakers. Lukas is confident it will become commonplace to wear power generating solar cells under the skin. This will save patients the discomfort of undergoing repeated surgeries to change batteries of such life-saving devices. Lukas has reported the findings in Springer’s journal Annals of Biomedical Engineering.

Electronic implants are invariably battery powered, with their size depending on the volume of the battery necessary for an extended lifespan. When the battery exhausts is power, it must either be charged or changed. This necessitates expensive and stressful medical procedures involving implant replacements, along with the risk of medical complications for the patient. The implantable solar cell is attractive as it converts the light from the sun penetrating the skin surface to generate enough energy for recharging the medical devices.

Lukas and his colleagues have developed devices specially designed for solar measurement to investigate the feasibility of rechargeable energy generators in real-life situations. The devices measure the output power generated. According to the team, 3.6 square centimeter cells generated enough power and were small enough for the intended implantation.

The team tested ten cells by covering them with optical filters for simulating the properties of human skin. This influenced the amount of sunlight penetrating the skin. A test group of 32 volunteers wore the cells on their arm for one week during summer, autumn, and winter months.

According to the team, the tiny cells were able to generate power more than the 5-10 microwatts required by a regular cardiac pacemaker, irrespective of the season. The lowest power output the team recorded on average was 12 microwatts. The overall mean power obtained from the cells was enough to power a pacemaker completely, or at least extend the lifespan of an active implant. Furthermore, the use of solar cells or energy-harvesting devices for powering an implant dramatically reduces the size of the device, while at the same time, helps to avoid device replacements.

According to Lukas, the results of the study may be suitably scaled up and applied to other mobile applications, especially solar powered applications on the human body. The only aspect that requires attention is the efficiency and catchment area of the solar cell, and the thickness of the skin covering it.

The Law, Big Data, and Artificial Intelligence

We use a lot of electronic gadgets in our lives, revel in Artificial Intelligence, and welcome the presence of robots. This trend is likely to increase in the future, as we continue to allow them to make many decisions about our lives.

For long, it has been a common practice using computer algorithms for assessing insurance and credit scoring among other things. Often people using these algorithms do not understand the principles involved, and depend on the computer’s decision with no questions asked.

With increasing use of machine learning and predictive modeling becoming more sophisticated in the near future, complex algorithm based decision-making is likely to intrude into every field. As such, expectedly, individuals in the future will have further reduced understanding of the complex web of decision-making they are likely to be subjected to when applying for employment, healthcare, or finance. However, there is also a resistance building up against the above, mainly in the EU, as two Oxford researchers are finding out from their understanding of a law expected to come into force in 2018.

With increasing number of corporations misusing data, the government is mulling the General Data Protection Regulation (GDPR), for imposing severe fines on these corporations. GDPR also contains a clause entitling citizens to have any machine-driven decision processes explained to them.

GDPR also codifies the ‘right to be forgotten’ while regulating the overseas transfer of private data of an EU citizen. Although this has been much talked about, not many are aware of two other clauses within GDPR.

The researchers feel the two clauses may heavily affect rollout of AI and machine learning technology. According to a report by Seth Flaxman of the Department of Statistics at the University of Oxford and Bryce Goodman of the Oxford Internet Institute, the two clauses may even potentially illegalize most of what is already happening involving personal data.

For instance, Article 22 allows individuals to retain the right not to be subject to a decision based solely on automatic processing, as these may produce legal complications concerning them or affect them significantly.

Organizations carrying out this type of activity use several escape clauses. For instance, one clause advocates use of automatic profiling—in theory covering any type of algorithmic or AI-driven profiling—provided they have the explicit consent of the individual. However, this brings up questions whether insurance companies, banks, and other financial institutions will restrict the individual’s application for credit or insurance, simply because they have consented. This can clearly have significant effect on an individual, if the institutes turn him or her down.

According to article 13, the individual has the right to a meaningful explanation of the logic involved. However, organizations often treat the inner working of their AI systems and machine learning a closely guarded secret—even when they are specifically designed to work with the private data of an individual. After January 2018, this may change for organizations intending to apply the algorithms to the data of EU citizens.

This means proponents of the machine learning and AI revolution will need to address certain issues in the near future.

Wordery Uses the Raspberry Pi for Book-Wrangling

Among the mass of technologically advanced stuff done with the popular single board computers, the Raspberry Pi (RBPi) has also been helping booksellers. At Wordery, an online bookshop, Jeff Podolski, an IT and network technician, is using the RBPi at their warehouse.

Wordery has over 10 million book titles in their list, including several on RBPi. Over the last few years, they have been working on improving their productivity and customer service drive. For their sorting and distribution operation, they have taken up a greater automation. This is allowing them to track packed items and offer interactive feedback to their staff. For this, they needed PCs on the desks they use for packing and mailing. However, a PC with a screen and barcode scanner would take up considerable space on the desk and consume a lot of power. Therefore, their IT team had the brainwave of using RBPis instead.

Jeff and his team conducted initial tests using an RBPi and a standard PC. They settled on using a setup with the 7-inch official LCD screen and case for the RBPi, and used a USB barcode scanner. This setup saved more than four-fifths of the space a PC would have used up on the desk, while using substantially less power.

However, an RBPi with screen and scanner, left unsecured on the desk, was likely to be knocked and bumped by items being packed and possibly smashed on the warehouse floor. This led Jeff to use a tablet-mounting arm, originally designed for wheelchairs. He clamped the arm to a table, and attached a backboard to the bracket meant to hold the tablet.

Making use of the rear mounting screw holes, Jeff was able to attach the RBPi and screen to the bracket. By routing and tidying the cable layout, Jeff and his team had a low power, small, easily movable interactive terminal, which all the staff in the warehouse could use.

The success of the project led to an installation of over 40 of these terminals in the warehouse, with benefits clearly visible. The warehouse has since processed record volumes using the terminals. They have improved on the previous year’s performance by 11%. Since they set up the RBPi terminals, the warehouse has been handling additional volumes, and packing productivity has increased by 30%. According to Jeff, the resounding success of the RBPi terminals has encouraged their use elsewhere in the building also, further reducing their equipment costs and power consumption.

With the RBPi community and the team at ModMyPi helping with the sourcing of the kit and cables in large volumes, Jeff’s team did a great job of modifying the tablet arm to make it fit another purpose. The RBPi Thin Client Project made the simple configurable thin client for project, while Martin Kirst helped to make the terminal emulator screens more readable and added new functionality to the units. By making the interaction wireless, the terminals can be moved to places where they are currently needed.

This project proves the RBPi can be used for making automation cheaper, more accessible, and much more flexible in an industrial setting.

Super Efficient Diamond Batteries from Nuclear Waste

So far, we have been dumping our dangerous nuclear waste into oceans or deep inside the earth, hoping they will stay there. Now, there is a better way out. Scientists are now confident they can use nuclear waste as a source of energy to convert radioactive gas into diamonds of the artificial type, not as jewelry, but to be used as batteries.

Scientists claim the diamonds can generate their own electrical current. As they are made of radioactive material with long half-life, the batteries could potentially provide power for thousands of years. According to Tom Scott, a geochemist from the University of Bristol in the UK, the batteries will simply produce direct current, without emissions, and without requiring any moving parts or maintenance.

The radioactive material, encapsulated within a diamond, will turn the long-term problem of handling nuclear waste into a nuclear powered battery producing a long-term supply of clean energy. As a demonstration of their claims, Scott’s team has developed a prototype diamond battery using an unstable isotope of Nickel-63 as its source of radiation.

The half-life of Nickel-63 is approximately 100 years. That means after 100 years, the prototype battery would still be retaining about 50 percent of its original charge. However, the scientists claim they have an even better source for making these batteries. They want to use the huge quantities of nuclear waste generated and stockpiled by UK.

From the 1950s through the 1970s, the first generation of Magnox nuclear reactors in the UK used graphics blocks to sustain nuclear reactions. However, the graphite blocks turned radioactive and generated an unstable carbon isotope, the Carbon-14.

Although UK had retired the last of these Magnox reactors by 2015, the decades of power generation has left a huge amount of nuclear byproduct as waste—nearly 95,000 tons of radioactive graphics blocks need to be safely stored and monitored.

Additionally, as Carbon-14 has a half-life of 5,730 years, UK may have to take care of this dangerous waste for a long, long time. However, it also means this material could be used to make batteries that last an amazingly long time—provided scientists could repurpose them into the diamond structure, just as they did with Nickel-63.

Carbon-14 emits only short-range radiation, one quickly absorbed by any nearby solid material. According to Neil Fox, one of the researchers, although touching or ingesting Carbon-14 would be dangerous, encasing it within diamond would prevent any short-range radiation from escaping. Moreover, diamond would offer the ultimate protection, as it is the hardest substance known to man.

The team presented their ideas at a lecture at the University of Bristol, but has yet to publish their research. The researchers claim that although Carbon-14 batteries would be good for low-power applications, their endurance would be on an entirely different scale.

For instance, an alkaline battery weighing 20 grams has an energy density of 700 Joules/gram, giving a life of 24 hours of continuous usage.

On the other hand, a diamond battery with 1 gram of C-14 will deliver only 15 Joules per day. However, it will continue to produce this level of output for more than 5,730 years—giving a total energy density of 2.7 TeraJoules/gram.

Explosion and Damage Proof High Energy Density Batteries

We seem to spend a major part of our waking life charging batteries of our smartphones, laptops, watches, wearables, and more. Although most of our gadgets work at lightning speeds, one common frustrating weakness lingers on—the batteries. Of course, they have improved tremendously in the last fifty years, yet they have retained characteristics such as being toxic, expensive, bulky, finicky, and most maddeningly, short-lived. The quest for a super battery does not end with smartphones alone, rather it continues with electric cars and renewable energy sources such as wind and solar power, holding the keys to a greener future.

Mike Zimmerman, a Professor at the Tufts University just outside Boston, and his team have created what they claim is the next generation of the Lithium-ion battery. The main characteristic of this new type of battery is it is safe to power up cars, phones, and other gadgets.

The current breed of Lithium-ion batteries relies on a liquid electrolyte between their positive and negative electrodes. When hit or pierced, the leaking liquid electrolyte makes the battery vulnerable to fire or even explosion. The Galaxy Note 7 phones from Samsung aptly demonstrated this—it had spontaneously exploding batteries that would catch fire as the battery casing caused one of the electrodes to bend, increasing the risk of short circuits.

However, Zimmerman’s battery won’t explode or catch fire even if most of it has been chopped away. Rather, it will continue to power the device. It will endure repeated damage without risk of fire or explosion, thanks to its solid electrolyte.

Besides being the Holy Grail for safe batteries, solid electrolytes can hold more charge for a given volume compared to what the liquid electrolytes can. The solid plastic electrolyte developed by Professor Zimmerman does not allow the formation of dendrites—tendrils of Lithium that originate from the electrodes and spread throughout the electrolyte—that cause the dangerous short-circuits.

Other researchers have been looking at charging times for batteries and trying to speed up the process. Rather than improve the charging times for Lithium-ions, scientists have been experimenting with different types of batteries, and claim to have hit success with batteries made from Aluminum foil.

Although research on Aluminum batteries has continued for years, most prototypes were incapable of withstanding more than a few dozen charges, before they lost their potency. Most cellphones, on the other hand, sustain more than a thousand charge cycles before their capacity deteriorates.

The Aluminum foil batteries can sustain a staggering 7,000 charge cycles. They are also safe—researchers could drill a hole into the battery while it was operating, and unlike a Lithium-ion battery, the Aluminum battery did not explode. However, Aluminum batteries are not yet ready for the market, as they are heavier than Lithium-ion batteries of the same capacity.

The researchers used a solution of Aluminum Trichloride dissolved in an organic solvent containing Chlorine. Although the Aluminum atom has three electrons in its outer shell, the present chemistry utilizes only one of them. Lithium atoms also do the same, as they have only one electron in their outer shell. However, Lithium atoms are only one-third as heavy as the Aluminum atoms.

Volumio for the Raspberry Pi

When you search for a networked stand-alone audio player with a touch screen, most likely chances are you will only find big consumer grade amplifiers. Those with network support may not have a touch screen or else may be very expensive. Most disappointing will be those having an issue with space and mobility. The best way out of this dilemma is to build one with the famous single board computer, the Raspberry Pi (RBPi).

You must start with an application that works on the RBPi. You can already find good quality DACs on the market. The makers of the application Volumio have used PCM1794A, the DAC from Texas Instruments with good results. As this is a 24-bit device, it can handle sample rates up to 200 KHz, and offers an 8x oversampling filter built-in.

The PCM1794A requires two voltages for proper functioning. It needs the 3.3 V for its digital part and the 5 V for its analog part. Although it seems possible to use the two voltages available on the GPIO expansion connector, the noise present on these voltages precludes their use for the DAC. Another possibility would be use the power supply for the DAC to power the RBPi. However, that is also not advisable, as this would mean degrading the power supply of the DAC. Therefore, the two devices need two distinctly different DC adapters.

For the I/V converter, another voltage is necessary and this has to be a negative voltage. The designers derived the negative voltage using the LM27761 IC, a special switched capacitor low-noise regulated voltage inverter. The IC is extremely small, only 2 x 2 mm, and operates at 2 MHz, introducing very little noise into the circuit.

Both the 5 V and 3.3 V required by the DAC are generated by ultra-low-noise positive linear regulators of the typeTPA7A4700 and TPS7A4901. Voltage dividers made by two resistors fix the output voltage, one pair for the 5 V and the other for the 3.3 V. A Schottky diode protects the input to the power supply against reverse polarity—it drops only 0.3 V from the single power supply of 7-8 V.

The 3.5-inch display goes above the Audio DAC. If necessary, use two standard-size stacking headers to place the display higher to clear the components. This will place the 25-way socket of the display above the Audio DAC PCB.

Performance

Plotting the amplitude of the output as a function of frequency shows the cut-off frequency at about 63.5 KHz. The total harmonic distortion plus noise was measured as a function of frequency with sampling rates of 48, 96, and 192 KHz shows it to be far lower than the acceptable limits—at 0.0007%. Although the RBPi generates several spurious frequencies that are just visible, the level for the fundamental frequencies is very low at -120 dB (1 µV). Those for the second and third harmonics are barely visible.

Various FFT analysis of a 16-bit, 1 KHz full-scale sine wave at different sampling rates shows the harmonic distortion to be far below the acceptable levels— at 0.002%. All these measurements show this tiny board to offer a great audio experience.

QSCR: Using A Wireless Hotspot To Charge Your Phone

Using the smartphone is always a pleasant experience, until the charge runs out. The only option left is to plug the phone into a charging arrangement, usually a mains-operated power supply that connects to the phone by a USB cable. The main disadvantage of this method is it limits the freedom of mobility of the phone until it is charged up again. That leaves people to wonder as to how long before smartphones could be charged wirelessly same as everyone uses Wi-Fi to link to the Internet.

Now, researchers at Disney Research have done the inevitable. They have discovered a method of charging electronic gadgets without using any type of cords or cradles. Not only can you charge a number of electronic devices through Wi-Fi anywhere in your room, you could simultaneously power fans, cellphones, and lights as well.

Quasistatic Cavity Resonance (QSCR), as the Disney researchers have named the technology, has been tested successfully during recent trials. The researchers generated near-field standing magnetic fields within a closed space. Filling a 16-ft. x 16-ft. room, these field waves were able to charge standard electronic gadgets within the room. However, the room needed to have special properties, such as metalized walls, floor, and ceiling.

Within this metal room, the scientists could generate magnetic waves suitable for charging several smartphones, glow a few lamps, and operate fans at the same time. In total, they transmitted about 1.9 KW of power, sufficient to charge about 320 smartphones simultaneously.

The trial has established that the innovative method has the capability to transfer electrical power as easily as Wi-Fi does. According to Alanson Sample, this could help power new applications for small mobile devices such as robots, as they would not need battery replacements or charging wires. Alanson is the principal research scientist and associate lab director at Disney Research.

Although the demonstration used room-scale wireless power, Alanson informs it could easily be scaled up to the size of a warehouse or down to the size of a toy chest.

Although wireless charging is not a new idea, it has always been a long-standing dream for many. In 1890s, Nicola Tesla had already demonstrated wireless lighting systems and proposed ideas of long distance power transmission without wires. However, none of that ever came into existence.

So far, transmitting power wirelessly has been accomplished only for short distances, mostly for charging stands or pads. However, the new technology, QSCR, will help to increase the transmission distance to many times over.

Once the researchers channeled electric power through the metalized walls, ceiling, floor of the room using the Quasistatic Cavity Resonance technique, there was enough uniform and strong magnetic fields inside the room. Receiving coils designed to intercept these magnetic field resonate at the same frequency because of capacitors placed across the coils. The induced currents within these coils can transfer the power at low frequencies to any device containing the receiving coils within the device. Making a room metalized is also not difficult, as it requires only a thin metallic coating on the walls.

Dual Function LEDs & Multifunctional Displays

At the University of Illinois at Urbana-Champaign, researchers have made dual-function nanorod LEDs that could double as multifunctional displays. The researchers are also working with Dow Electronic Materials in Marlborough, Massachusetts. The LEDs are made of tiny nanorods arrayed in a thin film. They could enable new interactive functions and multitasking devices. The researchers report their advances in the February issue of the journal Science.

According to Moonsub Shim, Professor of materials science and engineering at the University, the new LEDs will enable displays to be much more interactive devices, rather than just displaying information as they do now. This might form the basis of several new and interesting designs for several types of electronic gadgets.

Three types of semiconductor materials make up the tiny nanorods, each of them less than 5 nanometers in diameter. The first type emits and absorbs visible light. The other two semiconductor materials control the amount of charge flowing through the first. This combination allows the LEDs to emit light, while sensing and responding to light falling on it.

By switching between the emitting and detecting modes very quickly, the nanorod LEDs can perform both functions with ease. In fact, they are so fast in switching—three times faster than the standard display rates—the display seems to be permanently on. Because the LEDs are simultaneously detecting and absorbing light as well, a display of such LEDs may be made to respond to light signals in different ways, simply by programming them suitably. For instance, a display could automatically adjust its brightness in response to ambient light conditions. Although a separate light level sensor does this for the present displays, the new display could do it by sensing the ambient light on each pixel.

According to Professor Shim, for someone sitting outside with a tablet, reading will be easier on the eye, as the tablet will adjust its brightness based on ambient light on individual pixels of the display. For instance, the part of the display under a shadow falling across it will be dimmer than the part directly illuminated by sunlight. This will help to maintain a steady contrast.

The researchers were able to program individual pixels adjust their brightness automatically in response to an approaching finger. This response, once integrated into interactive displays, could allow the display to respond to recognizing objects through non-touch gestures.

Writing or drawing with light would also be possible with such displays. This could form the basis of smart whiteboards, tablets, or other such surfaces, on which a laser stylus could write or draw. Moreover, the researchers have discovered the LEDs not only respond to light, they convert it to electricity as well.

They found the LEDs responding to light just as solar cells do. Therefore, apart from enhancing the interaction between users and displays, it is also possible to actually use the displays to harvest light, for instance, to charge the cellphone when it is simply sitting idle, collecting ambient light. That means there is no need of integrating a separate solar cell on the display.