Category Archives: IC’s

Is it safe to buy gray market electronic components?

What Are Gray Market Electronic Components – And Are They Safe To Buy?

Chances are the low-cost rechargeable batteries that you ordered over the net failed after one or two cycles of operation. A closer inspection would have revealed the batteries were already past their shelf life when you received them. Welcome to the world of gray market electronic components, which currently forms about 6 to 8% of the total electronic components market, and makes up as much as $60 billion dollars’ worth.

Not only outdated components, even parts rejected (and preferably destroyed) by manufacturers, find their way in the supply chain. It is only after soldering the components and sending them for testing does the realization sinks in that they are not genuine. In the $300 billion semiconductor industry, such bogus components have an annual impact of up to $20 billion.

Apart from this, the gray market is also a known issue for unauthorized sale of new and branded products diverted from the authorized channels of distribution. The gray market not only makes the high-tech companies suffer, it also affects negatively consumers and other end-users of technology, such as the military and the defense. Products advertised as new and authentic could in reality be refurbished after use. They could even be counterfeit. Using counterfeit or non-conforming parts could have significant effects on the performance of the product. In the case of defense and military, these effects could also be catastrophic.

Components Direct recently conducted a study for a leading semiconductor supplier. They found over 90 million units of the products, both analog and digital devices, with over 7,000+ part numbers, were floating in the gray market. Over 80% of the products were in the Asian gray market, and 8% appeared in the EMEA (Europe, the Middle East and Africa) and North America. More than 29% of their gray market product had date codes of less than one year, although the product age spanned several years. Nearly 15% of these products had date codes more than 11 years old.

This demonstrates that no end consumer is immune to unauthorized products, irrespective of whether you are a military sub-contractor searching for obsolete components, or an OEM (Original Equipment Manufacturer) looking for new products.

As the chain of supply has numerous potential points of entry, and the ability to trace the path of the product flow remains limited. This makes the gray market problem a prevalent one in most product categories. The multiple points of entry provide unlimited opportunities for unscrupulous individuals, partners or counterfeiters.

The impact of the gray market is significant and long-term. This affects the revenue, cost, brand reputation, liability and risk of the entire chain of supplies. After sales support for the product may be non-existent or it may affect the company’s profitability to maintain support since no one has paid the applicable support. This also affects the end-user operationally and financially, and it may tarnish the manufacturer’s reputation because of the lowered satisfaction of the end-user with the brand

So how do you protect yourself? Look for component suppliers that are stocking distributors. Take to the search engines to see if there are reports of the supplier having supplied bad or counterfeit parts in the past. If you are unsure, buy a sample and have it tested. While there are some scammers out there, there are also many honest and hard-working small businesses that deserve your business.

Microchips to be imbedded in pills?

Yes, it’s true. Proteus Biomedical has announced that they will be launching a innovative product that imbeds microchips in pills so that patients can be monitored by their health care professionals and even their families.

The purpose of the monitoring is to be sure that patients are taking their medications properly and on time and to also monitor a range of additional patient information including respiration rate, heart rate, temperature, sleep patterns and physical activity. It is estimated that up to 50% of all patients take their medication improperly so this will assist health care professionals and family member with the patient’s drug regimen.

The sensors are about the size of a grain of sand. The sensor-enabled tablets are called Helius. The Helius can be taken with pills or incorporated into medications by the drug manufacturers. Once ingested, the sensors are activated by stomach acid. Each sensor contains a very small amount of copper and magnesium which react with stomach acid to create the power necessary to generate a digital signal. Through an adhesive patch on the skin, the digital signal is read and and the data transmitted through the patient’s cell phone.

Don’t look for the microchipped pill just yet. Proteus Biomedical will be introducing their new product in the UK first.

Available Methods of Marking Semiconductors

Semiconductor Markings – Available Methods

Traditionally, most components have two or three lines of identifying marks plus a company logo. Over time, the manufacturer codes have become more involved to incorporate a component’s identification plus the complete history of the process. Early on, it was the military applications that required very specific markings and identification processes. Current package markings are a by-product of those military requirements.

When a semiconductor is clearly identified, there is less room for error in the production process. Reducing errors when a component is in use for production saves time. There is also less product waste and the production process becomes more streamlined.

As the size of electronic components has decreased, the available space that manufacturers have to mark each piece has also decreased. The technology required to complete this task has become increasingly more complex.

The chief reason for the more complex codes stems from the demands of the end users. They need to have complete traceability of the product; from the history of the production cycle including the date and location of manufacture to the exact lot code. Possession of this information is critical to the end user in the event of a recall or defective components.

There are four primary methods to marking components in current use. Use of the various methods depend on the size, the type and the environment of the component production.

The methods are:
-Ink marking
-Electrolytic marking
-Pad printing
-Laser marking

In ink marking, inkjet printers are used. The technology is called ‘drop-on-demand’ which means that the flow of ink is controlled to create a pattern of ink droplets to form an image marking.

Electrolytic marking employs low voltage electric current with a stencil. The top layer of the package is etched by electricity flowing from the marking head, assisted by an electrolyte chemical. The process takes approximately 2-3 seconds to complete.

Pad printing is the most traditional of all the processes. A steel plate is etched with the image of the imprint. The ink is transferred to the plate which then is applied with pressure to the surface of the electronic component.

Laser marking is the most recent development in the marking process. It provides the greatest flexibility in the size, timing and complexity of the markings. The laser process is also the fastest method to mark electronic components; it is not uncommon for this process to print up to 300 characters per second. An additional benefit of using laser printing is the ability to produce a clean mark on many irregular surfaces.

No matter which method has been used to mark the semiconductors you use, you can be sure that much thought has been put into the decision.

How Do You Store Your Electronic Components?

Storing and retrieving a large number of electronic components like capacitors, resistors, LEDs, transistors, diodes, ICs etc. can be a daunting task not only because they are tiny but also because extreme temperature and humidity can deteriorate their performance. They also need careful handling as they are fragile and the tips can break easily.

In addition, electronic components need to be protected against static electricity.

To keep static electricity from damaging your sensitive electronic components, we recommend that you use sheets of anti-static foam. These foam sheets are easily cut to size to fit your storage containers.

A sheet of pink anti-static foam

A sheet of pink anti-static foam

There are a variety of container options to store electronic components safely. A range of molded ABS plastic boxes that can be side locked and stacked either vertically or horizontally are available. Each drawer has a number of compartments and can be labeled for easy identification. The various electronic components like resistors, capacitors etc need to be sorted and stored in these compartments in logical fashion. The drawers are easy to slide and can be pulled out / pushed in without much effort.

Ever wonder how the large electronic distributors store and retrieve their components? Automatic storage and retrieval systems make the job of storing and retrieving large numbers of electronic components easy and efficient. A typical construction has a vertical carousel in which a number of cameras are mounted on an endless chain activated by geared motors. The shelves are capable of rotating in either direction in a vertical plane. An electronic keypad facilitates calling the numbered carrier and bin / compartment. The system is equipped to store information about the location of code numbered electronic components in its memory. It can also be linked to a central computer for sharing of information for inventory control purposes. These automatic systems enable fast access of electronic components, instant stock update and save floor space, time, manpower and paper work involved in conventional storage systems.

How to Read Capacitors

Capacitance Values – and How to Read Them

Capacitors are used in a wide range of electronic components and circuits. They form an integral part of electronics. The capacitance of capacitors is measured in a unit known as Farads, represented by the letter ‘F’. A capacitor that has higher capacitance can be used for storing more charge as compared to one with a smaller capacitance value.

One Farad is a very high value for capacitance and usually smaller units are used, namely pico farad, nano farad etc. And as the capacitors are physically very small in size, their capacitance needs to be identified with a code mentioned on the capacitor itself. The exception to this is electrolytic capacitors that are big enough to have the capacitance value written directly on them.

Ceramic and film capacitors usually have a coded value marked on them. If the value marked on them is a two-digit whole number, then the capacitance is equal to the value mentioned in pico Farads. Thus a code of “10” implies that the capacitance is equal to 10 pico farads.

A three-digit whole number includes the first two significant digits, and the third digit as the multiplier (indicating the number of zeroes), and gives the value in pico Farads. Thus a code of “104” means, 10 multiplied by 10,000, giving the capacitance as 100,000 pF or 0.1 uF.

If a decimal number is used as the code on the capacitor, then the capacitance is equal to value mentioned in micro Farads. For instance, “.1” mentioned on the capacitor would imply 0.1 uF.

Finally, a whole number followed by the alphabet ‘n’ means the capacitance is equal to value mentioned in nano Farads.

In addition to the capacitance, the code on these electronic components can also be used for indicating the tolerance, voltage, and temperature properties.

470pF 3000V Capacitor

470pF 3000V Capacitor

In the example above, the capacitor reads:

471M

3KV

The 471 is deciphered as 470pF; M=20% tolerance; 3KV=3,000V

Here are the codes for tolerance:

B +/- 0.1pF
C +/- 0.25pF
D +/- 0.5pF
E +/- 0.5%
F +/- 1%
G +/- 2%
H +/- 3%
J +/- 5%
K +/- 10%
M +/- 20%
N +/- 0.05%
P +100% ,-0%
Z +80%, -20%

What is Transistor-Transistor-Logic – TTL?

TTL Transistor-Transistor-Logic

TTL Transistor-Transistor-Logic


TTL or Transistor-Transistor Logic is a type of digital circuit that is made from BJT or bipolar junction transistor along with resistors. Both the amplifying function and the logic gating function are carried out through transistors, thus the name transistor-transistor logic.

TTL is used for many applications like industrial controls, computers consumer electronics, test equipment, synthesizers and more. The TTL designation is also used in some places to imply ‘compatible logic levels’ even if they are not directly associated with transistor transistor logic circuits.

James Buie invented the Transistor Transistor Logic in 1961 and the first Transistor-Transistor Logic devices were made in 1963 in Sylvania. These devices were called the “Sylvania Universal High-Level Logic family” and were used within controls for the US Phoenix missile. In 1964 Texas Instruments produced ICs of 5400 series and later on, the 7400 series which made the Transistor-transistor Logic devices popular amongst electronic system designers. The 7400 series went on to become the industry standard. Many companies like AMD, Motorola, Intel, Fairchild, Siemens, National Semiconductor made compatible parts.

The TTL circuits were low cost which made them highly practical for using digital techniques in tasks which were earlier done through analog methods. One of the first computers that was built, in 1971, made use of the transistor transistor logic instead of a microprocessor chip which at that point of time was not available. With time incremental improvements in power consumption and speed were made, and the last popular series was the 74AS/ALS Advanced Schottky was made available in 1985.