If you are the type that goes biking into the mountains and all the while recording your adventures on camera while on the trip, you need a camera that is biking-centric, robust and suitable for long-distance trips. Of course, several suitable cameras already exist such as the GoPro, Fly6 and the Sony Action CAM, but they are expensive not accessible to all. On the other hand, an action camera for the Raspberry Pi (RBPi) is not only cheap, it is also open-source and suitable for the purpose.
The design of the RBPi action camera is based on off-the-shelf components. It is very easy to build this project if you have access to a soldering iron and a 3D printer. Of all the models of the RBPi series, model A+ consumes the lowest amount of power, which is an important factor to consider since you will be running it on batteries.
If you are trying out the camera for the first time with an RBPi, using an open-source case is advised.
For an RBPi camera meant to be used for biking, three design goals must be met: the project must have a long battery life, be capable of wireless communication and its enclosure must be simple and made of durable material.
Apart from using the RBPi model A+, meeting the first requirement means using a large battery, especially if your rides are going to be multi-hour long. For the second requirement, it is necessary to have both Wi-Fi and Bluetooth, to make it easy to communicate with the camera. The last goal contributes to the first two, therefore, it must be given due consideration. Since the action camera is meant for outdoor use, making every port available outside the case would have reduced the structural integrity and its dust/water resistance.
To package everything into a small enclosure and ensure their working, you may need to work on the Wi-Fi dongle first, as that sticks out more than anything else does. For this, you may need to remove the USB jack and then remove the adapter from its plastic case. You can solder the wires directly to the board. The Bluetooth module may be placed on top of the RBPi and a ribbon cable used to connect it to the headers underneath. Next, make a support for the battery and its charger/booster so they fit snugly under the RBPi. You may need a few spacers to ensure the protruding headers do not puncture the battery.
Place the camera as close to the side of the RBPi and design the case to around all the components along with the RBPi. Usually, the case will be in two parts, with the camera module mounted on the top. Keep the camera module within the case and mount it in place with screws.
Use two buttons, with which the RBPi will start and stop the recording sessions. This may require you to use special scripts (you can use those by Alex Eames) for the RBPi to listen to a button press to start the camera and another button press to stop recording. Communication with the RBPi is done primarily through ssh.